2019届九年级数学下册沪科版教学课件:26.2--等可能情形下的概率计算(共19张PPT)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

26.2等可能情形下的概率计算复习引入〉必然事件;在一定条件下必然发生的事件〉不可能事件;在一定条件下不可能发生的事件〉随机事件;在一定条件下可能发生也可能不发生的事件抛掷一枚均匀的硬币,向上一面可能的结果有几种?哪种结果出现的可能性大些?答:其结果有“正面向上”和“反面向上”两种可能结果,这两种结果出现的可能性相等。试验1试验2抛掷一枚均匀的骰子,向上一面可能的结果有几种?哪种结果出现的可能性大些?答:其结果有1,2,3,4,5,6六种可能不同的结果,这六种结果出现的可能性相等。⑵等可能性:各种不同结果出现的可能性相等。上面两个试验中,有如下两个共同的特点⑴有限性:所有可能的不同结果都只有有限个;我们可以通过列举所有可能结果的方法,具体分析后的得到随机事件的概率例1袋中装有3个球,2红1白,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽取1个球,抽到红球的概率是多少?解抽出的球共有三种等可能的结果:红1,红2,白,三个结果中有两个结果:红1,红2,使得事件A(抽得红球)发生,故抽得红球这个事件的概率为即P(A)=32322、某单位工会组织内部抽奖活动,共准备了100张奖券,设特等奖1个,一等奖10个,二等奖20个,三等奖30个。已知每张奖券获奖的可能性相同。求:P=1100P=1+10+20+3010061100=P=10+20100=31030100=(3)一张奖券中一等奖或二等奖的概率。(2)一张奖券中奖的概率;(1)一张奖券中特等奖的概率;一般地在一次随机试验中,有n种可能的结果,并且这些结果发生的可能性相同,其中使事件A发生的结果有m(m≤n)种,那么事件A发生的概率为nmAP)((m≤n)当A是必然事件时,m=n,P(A)=1;当A是不可能事件时m=0,P(A)=0.1)(0AP例2抛掷两枚均匀的硬币,求两枚硬币正面都向上的概率抛掷两枚硬币,向上一面的情况一共可能出现如下四种不同的结果(正,正),(正,反),(反,正),(反,反)可用“树状图”来表示所有可能出现的结果解:开始正第一枚反第二枚正反正反结果(正,正)(正,反)(反,正)(反,反)由于共有四种结果,且每种结果出现的可能性相同,其中两枚硬币正面向上的结果只有一种,所以事件A发生的概率为41树状图能够直观地把各种可能情况表示出来,既简便明了,又不易遗漏问题:利用直接列举法可以列举事件发生的各种情况,对于列举复杂事件的发生情况还有什么更好的方法呢?P(A)=例3某班有1名男生、2名女生在校文艺演出中获演唱奖,另有2名男生、2名女生获演奏奖。从获演唱奖和演奏奖的学生中各任选一人去领奖,求两人都是女生的概率.解:设两名领奖学生都是女生的事件为A,两种奖项各任选1人的结果用“树状图”来表示开始获演唱奖的获演奏奖的男女女女1男2男1女2女1男2男1女1男2男1女2女2共有12中结果,且每种结果出现的可能性相等,其中2名都是女生的结果有4种,所以事件A发生的概率为P(A)=31124当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表法.一步实验所包含的可能情况另一步实验所包含的可能情况两步实验所组合的所有可能情况,即n在所有可能情况n中,再找到满足条件的事件的个数m,最后代入公式计算.列表法中表格构造特点:第二次第一次(红1,红1)(红1,红2)(红1,黄1)(红1,黄2)(红2,红1)(红2,红2)(红2,黄1)(红2,黄2)(黄1,红1)(黄1,红2)(黄1,黄1)(黄1,黄2)(黄2,黄1)(黄2,红1)(黄2,红2)(黄2,黄2)红球1一个袋子中装有2个黄球和2个红球,搅匀后从中任意摸出一个球,放回搅匀后再从中摸出第二个球,用列表法求两次都摸到红球的概率红球2黄球1黄球2黄球1黄球2红球1红球2解:列表如下所以,一共有16种等可能的情况,而两次都摸到红球有4种情况,所以P(两次摸到红球)=41164第二次第一次(红1,红2)(红1,黄1)(红1,黄2)(红2,红1)(红2,黄1)(红2,黄2)(黄1,红1)(黄1,红2)(黄1,黄2)(黄2,黄1)(黄2,红1)(黄2,红2)红球1红球2黄球1黄球2黄球1黄球2红球1红球2解:列表如下所以,一共有12种等可能的情况,而两次都摸到红球有两种情况,所以P(两次摸到红球)=61122一个袋子中装有2个黄球和2个红球,搅匀后从中任意摸出一个球,搅匀后再从中摸出第二个球,用列表法求两次都摸到红球的概率放回不放回常用的两种列举法是列表法和树状图法。1.当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重复、不遗漏地列出所有可能的结果,通常用列表法。2.当一次试验要涉及两个或两个以上因素时,为了不重复、不遗漏地列出所有可能的结果,通常采用树状图法。课堂总结:用列表法和树形图法求概率时应注意什么情况?利用树形图或表格可以清晰地表示出某个事件发生的所有可能出现的结果;从而较方便地求出某些事件发生的概率.当试验包含两步时,列表法比较方便,当然,此时也可以用树形图法,当试验在三步或三步以上时,用树形图法方便.利用直接列举(把事件可能出现的结果一一列出)、列表(用表格列出事件可能出现的结果)、画树状图(按事件发生的次序,列出事件可能出现的结果)。的方法求出共出现的结果n和A事件出现的结果m,在用公式求出A事件的概率为列举法利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果;从而较方便地求出某些事件发生的概率.•书本P102-103•习题26.2•第1,2,3题对时间的慷慨,就等于慢性自杀。——奥斯特洛夫斯基

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功