第四讲控制植物基因表达的启动子植物生物技术第一节植物基因的结构能编码蛋白质的基因称为结构基因。真核生物的结构基因是断裂的基因,含有若干段编码序列,这些可以编码的序列称为外显子。在两个外显子之间被一段不编码的间隔序列隔开,这些间隔序列称为内含子。每个断裂基因在第一个和最后一个外显子的外侧各有一段非编码区,称为侧翼序列,在侧翼序列上有一系列控制基因表达的调控序列。5‘调控序列3‘调控序列启动子结构基因Kzhi启动子区增强子区结构基因•植物基因表达:•在启动子和其它调节因子(如转录因子、增强子)作用下,RNA聚合酶II将功能基因转录成mRNA,mRNA再并进一步翻译成蛋白质的过程。RNA聚合酶转录因子转录因子•顺式作用元件(cis-actingelements):是基因周围(同一染色体或DNA分子)能与特异转录因子结合而影响基因转录的DNA序列。主要是起正性调控作用的顺式作用元件,包括启动子(promoter)、增强子(enhancer);近年又发现起负性调控作用的元件静止子(silencer)基因表达可以在转录水平和翻译水平进行调节。基因转录受到一些作用元件的影响:反式作用因子(trans-actingfactors)由不同染色体上基因编码的、能直接或间接地识别或结合在各顺式作用元件核心序列上并参与调控靶基因转录效率的一些结合蛋白。反式作用因子有两个重要的功能结构域:DNA结合结构域和转录活化结构域,它们是其发挥转录调控功能的必需结构。3‘调控序列:终止子真核基因在3′端终止密码的下游有一个核苷酸顺序为AATAAA,这一顺序可能对mRNA的加尾(mRNA尾部添加多聚A)有重要作用。这个顺序的下游是一个反向重复顺序。这个顺序经转录后可形成一个发卡结构。发卡结构阻碍了RNA聚合酶的移动。发卡结构末尾的一串U与转录模板DNA中的一串A之间,因形成的氢键结合力较弱,使mRNA与DNA杂交部分的结合不稳定,mRNA就会从模板上脱落下来,同时,RNA聚合酶也从DNA上解离下来,转录终止。AATAAA顺序和它下游的反向重复顺序合称为终止子,是转录终止的信号。•在植物基因工程中,我们要构建基因表达盒(geneexpressioncassette),表达盒的结构为:终止子目的基因基因组DNA植物基因表达的结构启动子多为原核生物的:CaMV35S基因的polyA;农杆菌胭脂碱基因的Tnos原核生物和真核生物的启动子第二节启动子的结构启动子:位于结构基因5’端上游、能够指导RNA聚合酶同模板正确结合、启动基因转录的一段DNA序列。启动子区增强子区结构基因真核启动子比原核更复杂、序列也更长,它不像原核启动子那样有明显共同一致的序列,而且单靠RNA聚合酶难以起动转录,而是需要多种蛋白质因子的相互协调作用。不同真核启动子之间大小、序列很不相同。不同物种的启动子有时不能互用,如动物和植物之间。•真核启动子中包含了许多调节基因转录的元件,它们控制着基因表达的强弱或者时空差异。根据对基因表达的必须性,这些元件分为2类:核心启动子元件和上游启动子元件(1)TATA框(TATAbox):位于5′端转录起始点上游约20-30个核苷酸的地方。TATA框是一个短的核苷酸序列,其碱基顺序为TATAATAA。TATA框是RNA聚合酶的重要的接触点,它能够使酶准确地识别转录的起始点并开始转录。当TATA框中的碱基顺序有所改变时,mRNA的转录就会从不正常的位置开始。(2)CAAT框(CAATbox):位于5′端转录起始点上游约70-80个核苷酸的地方。CAAT框是启动子中另一个短的核苷酸序列,其碱基顺序为GGCTCAATCT。CAAT框是RNA聚合酶的另一个结合点,一般认为它控制着转录的起始频率,而不影响转录的起始点。当这段顺序被改变后,mRNA的形成量会明显减少。1.核心启动子元件(corepromoterelement):指RNA聚合酶起始转录所必需的最小的DNA序列,包括TATA盒和CAAT盒。核心元件单独起作用时只能确定转录起始位点和产生基础水平的转录。11281tttcccgccttcagtttagcttcatggagtcaaagattcaaatagaggacctaacagaac11341tcgccgtaaagactggcgaacagttcatacagagtctcttacgactcaatgacaagaaga11401aaatcttcgtcaacatggtggagcacgacacacttgtctactccaaaaatatcaaagata11461cagtctcagaagaccaaagggcaattgagacttttcaacaaagggtaatatccggaaacc11521tcctcggattccattgcccagctatctgtcactttattgtgaagatagtggaaaaggaag11581gtggctcctacaaatgccatcattgcgataaaggaaaggccatcgttgaagatgcctctg11641ccgacagtggtcccaaagatggacccccacccacgaggagcatcgtggaaaaagaagacg11701ttccaaccacgtcttcaaagcaagtggattgatgtgatatctccactgacgtaagggatg11761acgcacaatcccactatccttcgcaagacccttcctctatataaggaagttcatttcatt11821tggagagaacacgggggactcttgac花椰菜花叶病毒35S启动子=CaMV35S启动子TATA框(TATAbox)CAAT框(CAATbox)2.上游启动子元件(upstreampromoterelement):包括通常位于-70bp附近的CAAT盒和GC盒、以及距转录起始点更远的上游元件。这些元件与相应的蛋白因子结合能提高或改变转录效率。不同基因具有不同的上游启动子元件,其位置也不相同,这使得不同的基因表达分别有不同的时间与空间表达调控。这些上游启动子元件中,最普遍的是增强子元件。•3.增强子(enhancer)是一种能够提高同一条DNA链上基因转录效率的顺式调控元件。最早是在SV40病毒中发现的长约200bp的一段DNA,可使旁侧的基因转录提高100倍,其后在多种真核生物和原核生物中都发现了增强子。增强子通常长100-200bp,也和启动子一样由若干组件构成,基本核心组件常为8-12bp,可以单拷贝或多拷贝串连形式存在。增强子的作用有以下特点①增强子可以远距离作用。通常可距离1-4kb、个别情况下离开所调控的基因30kb仍能发挥作用,而且在基因的上游或下游都能起作用。②增强子作用与其序列的正反方向无关。将增强子方向倒置依然能起作用。而将启动子倒就不能起作用,可见增强子与启动子是很不相同的。③增强子要有启动子才能发挥作用。没有启动子存在,增强子单独不能表现活性。④增强子对启动子没有严格的专一性。同一增强子可以影响不同类型启动子的转录。例如当含有增强子的病毒基因组整合入宿主细胞基因组时,能够增强整合区附近宿主某些基因的转录;当增强子随某些染色体段落移位时,也能提高移到的新位置周围基因的转录。1pCambia-Agl5-iaaM16500bpLBpolyAHygromycin2XCaMV35SKanamycinnosiaaMAgl5lacZ35SPGUSplusnosRBEcoRI(1)XhoI(15500)XhoI(14500)SacI(300)SalI(1430)NcoI(2400)SalI(4500)PstISphIHindIII(4520)NcoI(5200)BglII(5206)NheI(7250)NheI(10650)带增强子的35S启动子4.静止子(silencer)•最早在酵母中发现,以后在T淋巴细胞的T抗原受体基因的转录和重排中证实这种负调控顺式元件的存在。目前对这种在基因转录降低或关闭中起作用的序列研究还不多,但从已有的例子看到:静止子的作用可不受序列方向的影响,也能远距离发挥作用,并可对异源基因的表达起作用。一、组成型启动子•可以在所有细胞、组织和器官中持续发挥作用的启动子。如看家基因的启动子。组成型启动子用来控制基因的持续表达,如抗病、抗虫、抗不良环境的基因。•在植物基因工程中,用于控制基因组成型表达的启动子主要有2个来源:微生物和植物。第三节启动子的类型1.病毒来源的组成型启动子—CaMV35S启动子•CaMV35S启动子是花椰菜花叶病毒(cauliflowermosaicvirus,CaMV)双链DNA病毒基因组中启动35SRNA基因转录的启动子,CaMV35Spromoter,它可以利用宿主细胞核RNA聚合酶进行基因转录,并且不依赖于病毒的产物。35S启动子的结构+9-90-343DomainADomainBDomainA:与在根部起作用有关。DomainB:是烟草转录因子ASF-1的结合部位,与在植物叶片、茎等绿色组织中起作用有关。上游部分:与转录强度有关(增强子功能)。含有重复的-343—-90部分的35S启动子比350bp的35S启动子的强度大10倍。35S启动子的核心长度为60bp左右;其上游有其它元件,控制启动子的转录效率和特异性,其中包括增强子。增强子•CaMV35S启动子是一个组成型启动子,不仅可以能在双子叶植物中高效启动基因表达,而且在许多单子叶植物中也可以高效启动基因表达。另外CaMV35S启动子内部没有我们常用的酶切位点,因而容易克隆和使用,在植物基因工程中得到了广泛的应用。35S启动子控制的GUS基因在烟草中表达茎叶片横切面根花幼苗•由于CaMV35S启动子在植物中成功的应用,人们也克隆了其它病毒的启动子,如cassava(木薯)veinmosaicvirus(CsVMV)promoter,Australianbananastreakvirus(BSV)promoters,mirabilismosaicvirus(MMV)promoterandfigwort(玄参)mosaicvirus(FMV)promoter,这些启动子也能够在植物中高效高效启动基因的转录。•利用病毒来源的启动子进行植物转基因有令人担心的问题,如:•转基因食物与感染人类的病毒存在时,启动子可能与病毒基因重组、导致病毒基因的大量表达。•植物细胞可能不识别病毒来源的启动子序列,把它当作外源DNA,对它进行修饰、使它失去作用,导致基因沉默。原核生物组成型启动子之二:农杆菌胭脂碱合成酶基因启动子NospromoterNospromoter35SpromoterNospromoter烟草卫矛2.植物来源的组成型启动子•在植物中有很多看家基因,在各种类型细胞和所有时间内都表达。启动这些基因表达的启动子就是组成型启动子。现在许多这类启动子已经被克隆,并在植物基因工程得到了应用。•肌动蛋白(actin)是细胞基本骨架的成分,actin基因家族的基因都是组成型基因,其启动子就是组成型启动子。通过检测报告基因的表达,发现1.5kb的拟南芥actin2基因启动子几乎在拟南芥所有器官和整个发育过程中都起作用,仅在种皮、胚轴、子房和花粉囊中不起明显作用。•水稻的actin1基因启动子仅不在木质部中起作用。拟南芥ACTIN2基因启动子分析•Ubiquitin(泛素蛋白)也是细胞中重要的基本成分,参与了许多重要生命过程,如蛋白质转运、染色质结构、DNA修复等。来自玉米的Ubiquitin1基因的启动子(pUbi)是用得比较多的植物启动子之一,特别是在单子叶植物中,在玉米中pUbi的作用是35S启动子的10倍。•来自烟草的Ubi.U4基因的启动子(-263bp)在烟草中的作用比35S启动子好。二、特异启动子•在基因工程中利用组成型启动子高表达基因常常带来许多麻烦,如影响植物的正常生长发育,转基因植物安全性等问题,所以我们希望在时空上能够控制基因的表达,因此就要用细胞、组织、器官特异启动子。转35S-Kn1-Nos基因的烟草转35S-Kn1