采用LM317三端稳压芯片的直流稳定电源的设计附件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

武汉理工大学《模拟电子电路》课程设计说明书1直流稳定电源摘要:随着现代科技的不断发展,各种各样的电气、电子设备已经广泛的应用于日常工作、科研、学习等各个方面。电源作为电气、电子设备必不可少的能源供应部件,需求日益增加,而且对电源的功能、稳定性等各项指标也提出了更高的要求。对电源的研究和开发已经成为新技术、新设备开发的重要环节,在推动科技发展中起着重要作用。本设计分别用LM317三端稳压芯片稳压电路,LM317三端稳压芯片稳流电路和反馈式逆变电路设计直流稳压电源,直流稳流电源和DC-DC变换器。通过相关知识计算出各电路中各个器件的参数,使电路性能达到设计要求中的电压调整率,电流调整率,负载调整率,纹波电压等各项指标。关键词:电源;LM317三端稳压芯片稳压电路;LM317三端稳压芯片稳流电路;反馈式逆变电路武汉理工大学《模拟电子电路》课程设计说明书2目录:1原理电路的设计…………………………………………31.1直流稳压电源电路设计………………………………31.2直流稳流电源电路设计………………………………51.3DC-DC转换电路设计…………………………………71.4电路图与主要工作原理………………………………101.5主要参数的选择与计算………………………………112安装、调试、仿真过程…………………………………132.1电路实物的安装与调试………………………………132.2DC-DC转换器的仿真与参数分…………………………132.3针对问题的调试………………………………………133数据整理及最终分析……………………………………153.1稳压模块的数据结果…………………………………153.2稳压模块的数据结果…………………………………163.3DC-DC变换器的数据结果……………………………163.4数据分析………………………………………………164心得体会…………………………………………………175元器件清单………………………………………………186主要参考文献……………………………………………19武汉理工大学《模拟电子电路》课程设计说明书31原理电路的设计1.1直流稳压电源电路设计1.1.1可行的直流稳压电源电路设计方案经过多方查找资料,我认为直流稳压电源电路的设计可以采用两种大思路:采用分立元件设计或采用集成稳压芯片设计。分立元件的设计方案我查找到以下几种:1.1.1.1由运算放大器和晶体管构成的稳压电路:图表1运算放大器和晶体管构成的稳压电路如图a、b是由运算放大器和晶体管构成的稳压电路。如图(a)是采用运算放大器的高稳定性基准电压电路,A1输出采用VDZ1进行电平移动,目的是使其工作稳定。VDZ2是温度补偿型稳压二极管,温度特性非常好。由于该二极管的电流恒定,因此电压变动非常小。VT1的发射极电压约为16V,因此,VDZ2的电流也恒定,输出电压非常稳定。如图(b)~(d)是误差放大器采用TA7502的稳压电路。其中,如图(b)是输出电压高于稳压二极管稳定电压的电路,如图(c)是输出电压低于稳压二极管稳定电压的电路。为了增大输出电流,采用VT1作为射随电路,输出电流为10mA左右时;只用TA7502已足够。VT2为限流晶体管,R1为电流检测电阻,当电路输出电流超过设定值时,R1上电武汉理工大学《模拟电子电路》课程设计说明书4压降增大使VT2导通,从而限制输出电流。如图(d)是负输出电压电路,其工作原理与如图(b)电路基本相同。1.1.1.2分立元件制作的带限流保护可调稳压电源:P1是用来设置限制最大输出电流,调整它可以在相应的输出电压时,给出50mA-2A的电流限制。P2用做输出电压调节。这里必须注意的是要求用对数型的电位器。这样输出电压的可调性和线性会更好些。电源变压器的输出电压和容量应根据你所需要的输出电压和电流来选区。最佳的方案是:变压器次级电压为36、40、48V或带中间抽头的50、75、80V。容量为100VA。电容C1可以从2200-6800uF/35-50V之间选择。BC182为50V/100mA/NPN三极管;BD139为80V/1.5A/NPN三极管;BC212为50V/100mA/PNP三极管;2N3055为60V/15A/NPN三极管。Q4必需使用散热器,另外它可以由TIP3055替代。1.1.1.3LM317集成稳压芯片构成的可调式稳压电源图表2分立元件制作的带限流保护可调稳压电源图表3LM317集成稳压芯片构成的可调式稳压电源武汉理工大学《模拟电子电路》课程设计说明书5这里介绍的可调稳压电源可以实现从1.25V~30V连续可调,输出电流可到4A左右。采用最常见的可调稳压集成电路LM317组成电路的核心,关于LM317的详细指标参数可参阅用LM317制作简易电源电路。下面简单介绍一下该电路的特点。本电路中,由T2、D5、VW1、R5、R6、C10及继电器K构成自适应切换动作电路。当输出电路低于14V时,VW1因击穿电压不够而截止,无电流通过,T2截止,K不吸合,其触点K在常态位置,电路输入电流14V交流电。反之当输出电压高于14V时,VW1击穿导通,T2亦导通,继电器K吸合,28V交流电接入电路。这样可以保证输入电压与输出电压差不会大于15V,此时,LM317输出电流典型值为2.2A。图中采用了两块LM317供电,整个电路输出电流可在4A以上。由于两块LM317参数不可能一样,电路中在LM317输出端串接了小阻值电阻R3、R4,用以均分电流。输出电压调整由RP1、RP2完成。附加晶体管T1的目的在于避免电位器RP1滑动端接触不良,使W317调整公共端对地开路,造成输出电压突然变化,损坏电源及负载。双色发光二极管作为保险丝熔断指示器(红光)兼电源只是器(橙色光)。当电源正常时,两只发光二极管均加有正向电压,红、绿发光二极管均发光,形成橙色光。当保险丝FU2断开时,仅红色发光管加有正向电压,故此时只发红光。为保证稳压准确,设计电路板时主电流回路应足够宽,并焊上1mm以上的铜导线或涂锡,以减少纹波电压。C6、C8尽量靠近LM317的输入、输出端,并优先采用无感电容。C5如无合适容量,可用几只电容并联。R3、R4可用锰丝自制。调试时,调整RP1、RP2应使继电器在电源输出14V左右时吸合,否则可调换稳压二极管再试。1.1.2最终决定的直流稳压电源电路设计方案最终,我决定采用第三种LM317三端集成稳压芯片设计直流稳压源,主要因为它的使用非常简单,仅需两个外接电阻来设置输出电压。此外它的线性调整率和负载调整率也比标准的固定稳压器好。LM117/LM317内置有过载保护、安全区保护等多种保护电路。通常LM117/LM317不需要外接电容,除非输入滤波电容到LM117/LM317输入端的连线超过6英寸(约15厘米)。使用输出电容能改变瞬态响应。调整端使用滤波电容能得到比标准三端稳压器高的多的纹波抑制比。1.2直流稳流电源电路设计1.2.1可行的直流稳流电源电路设计方案武汉理工大学《模拟电子电路》课程设计说明书61.2.1.1高精度恒压恒流直流稳压电源电路该电路可以实现稳流输出,但毫无疑问的是过于复杂,精度极高,超出题目要求及制作条件,故不予考虑。1.2.1.2开关电源式高压恒流源电路图研制仪器需要一个能在0到3兆欧姆电阻上产生1MA电流的恒流源,用UC3845结合12V蓄电池设计了一个,变压器采用彩色电视机高压包,其中L1用漆包线在原高压包磁心上绕24匝,L3借助原来高压包的一个线圈,L2借助高压包的高压部分.L3和LM393构成限压电路,限制输出电压过高,调节R10可以调节开路输出电压1.2.1.3三端固定输出集成稳压器组成的输出电流可调的恒流源电路此种电路结构简单,稳流效果比较好,但由于7805的2、3端之间电压比较大,导致R1、R2上分得电压和消耗功率较多,影响电路效率。1.2.1.4改进方案同样是采用的LM317集成三端稳压器,用12V供电,依靠317的2、3两端带隙电压恒定的特点,用R3与RS2的阻值控制输出电流的大小,达到输出稳定可调电流的目的。图表4LM317组成稳流电源电路1.2.2最终决定的直流稳流电源电路设计方案武汉理工大学《模拟电子电路》课程设计说明书7最终我决定采用第四种设计方案,原因基本与稳压源的选择想通。而且用LM317制作这一电路简单易行,在性能上又能达到设计要求指标,是最合理和最理想的方案之一。1.3DC-DC转换电路设计1.3.1可行的DC-DC转换电路设计方案1.3.1.1PWMDC/DC变换器图表5UC3843组成的PWMDC/DC变换器1MHz电流型PWMDC/DC变换器的原理框图。电流型控制电路以UC3843为核心,开关频率为1MHz;变换器采用推挽式〔3〕主电路;同步整流采用功率MOSFET可控整流电路;辅助电流由电阻和12V稳压管组成(也可采用自举电路),为UC3843提供+12V电源;电流采样是取变压器初级串联电阻上的电压(见图2中电阻R)。UC3843的限流和占空比控制变压器初级电流流过取样电阻R后,在R两端产生正比于初级电流的电压,该电压经RC滤波加到UC3843的9脚,从而实现逐周限流。正常工作状态下,UC3825的9脚输入电压必须低于1V门限电压。9脚输入电压超过1V时,脉宽将随之变窄。当9脚输入电压超过1.4V时,输出电流中断,并且UC3843开始软启动程序。利用斜坡RAMP脚(7脚)输入信号,UC3843可以实现电流型控制或常规的占空比控制。当该脚接定时电容器时,UC3843可以实现占空比控制。当RAMP脚接电流取样电阻时,UC3843可以实现电流型控制。在这种应用电路中,初级电流波形经过很小的RC滤波网络后,产生斜坡波形。RC网络的作用是斜率补偿。该输入信号的动态范围为1.3V,通常用来产生PWM斜率补偿。同步整流电路过去低电压输出的DC/DC开关变换器采用肖特基二级管作为同步整流管,其正向压武汉理工大学《模拟电子电路》课程设计说明书8降约为0.4~0.65V,低电压、大电流时通态功耗很大。因功率MOSFET管的正向压降很小,所以用功率MOSFET管作为输出的整流管。与肖特基二极管相比,用功率MOSFET管的优点除了正向压降很小外,还有阻断电压高,反向电流小等优点。图2所示为输出全波同步整流电路。功率MOSFET管VT1、VT2为两个整流管(VD1、VD2分别为VT1、VT2内部反并联二极管)。当变压器次级绕组同名端为正时,VT2、VD2同时导通,VT1、VD1阻断,在L1续流期间,VT1、VT2截止,VD1、VD2同时导通续流;反之,当变压器次级绕组同名端为负时,VT1、VD1同时导通,VT2、VD2阻断,在L1续流期间,VT1、VT2截止,VD1、VD2同时导通续流。采取此功率MOSFET管整流电路,可以大大提高整流效率。输出+5V/20A,采取导通电阻10mΩ的功率MOSFET管,则导通损耗为:PON=10mΩ×(20A)2=4×103mW=4w如果采取肖特基二极管整流电路,肖特基二极管的导通压降取0.6V,则导通损耗为:PON=0.6V×20A=12w可见仅整流管损耗就减小8W,效率约能提高6%。变压器的制造初级绕组N2与次级绕组N4之间具有较紧密的耦合;而初级绕组N1到初级绕组N2之间的耦合不很严格。高频设计需要特别注意外部导体和元件的布置,减小不必要的电感和电容影响。所有的导线长度必须尽可能地短。印制电路板应仔细地布置元件及其连接。功率MOSFET管栅极的电阻应选碳成分的电阻,以降低串联电感1.3.1.2NE555芯片的升压电路图表6NE555芯片的升压电路E555、RW2、R7、R8、C6组成多谐振荡电路,由NE555的引脚3输出振荡波形;R9、武汉理工大学《模拟电子电路》课程设计说明书9C8组成加速电路,Q5为推动管;Q6组成电流开关电路,L1是储能元件,R14、C9是阻尼元件;D9、C10、C11组成输出整流滤波电路;D11、R15为输出电压指示电路。上电时,VCC通过RW2、R7、R8给C6充电,NE555输出

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功