催化加氢技术以及催化剂一、意义1、具有绿色化的化学反应,原子经济性。催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。2、产品收率高、质量好普通的加氢反应副反应很少,因此产品的质量很高。3、反应条件温和;4、设备通用性二、催化加氢的内容1、加氢催化剂Ni系催化剂l骨架Ni(1)应用最广泛的一类Ni系加氢催化剂,也称Renay-Ni,顾名思义,即为Renay发明。具有很多微孔,是以多孔金属形态出现的金属催化剂,该类形态已延伸到骨架铜、骨架钴、骨架铁等催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。(2)具体的制备方法:将Ni和Al,Mg,Si,Zn等易溶于碱的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。(3)合金的成分对催化剂的结构和性能有很大的影响,镍、铝合金实际上是几种金属化合物,通常所说的固溶体,主要组分为NiAl3,Ni2Al3,NiAl,NiAl2等,不同的固熔体在碱中的溶解速度有明显差别,一般说,溶解速度快慢是NiAl3>Ni2Al3>NiAl>NiAl2,其中后二种几乎不溶,因此,前二种组分的多少直接影响骨架Ni催化剂的活性。(4)多组分骨架镍催化剂,就是在熔融阶段,加入不溶于碱的第二组分和第三组分金属元素,如添加Sn,Pb,Mn,Cu,Ag,Mo,Cr,Fe,Co等,这些第二组分元素的加入,一般能增加催化剂的活性,或改善催化剂的选择性和稳定性。(5)使用骨加镍催化剂需注意:骨架镍具有很大表面,在催化剂的表面吸符有大量的活化氢,并且Ni本身的活性也很,容易氧化,因此该类催化剂非常容易引起燃烧,一般在使用之前均放在有机溶剂中,如乙醇等。也可以采用钝化的方法,降低催化剂活性和保护膜等,如加入NaOH稀溶液,使骨架镍表面形成很薄的氧化膜,在使用前再用氢气还原,钝化后的骨架镍催化剂可以与空气接触。其它镍系催化剂从1897年Sabatier将乙烯和氢气通到还原镍使之生成乙烷开始,这是最古老的镍催化剂,工业上几乎没有单独使用镍的,而广泛使用的却是加有各种单体或助催化剂的镍,一般的制法是把硅藻土加进硝酸镍水溶液中,一边搅拌一边加碳酸钠,使碱式碳酸镍(或氢氧化镍)沉淀在硅藻土上。充分地水洗过滤干燥。将制成的催化剂在使用之前,在350-4500C的氢气流中进行还原。鉴于还原的催化剂与空气接触会着火而失去活性,使用必须注意。此外,还有把硝酸镍溶液和硅藻土的混合物蒸干,在400-5000C热分解为NiO-硅藻土后,用氢气还原的方法。通常,还把少量金属氧化物作为助催化剂加到NiO-硅藻土中,例如NiO-氧化钍-硅藻土[40],NiO-Cu-硅藻土等[41],均属于高活性的催化剂。可用作载体的物质还有浮石、氧化铝、硅胶、酸性白土、氧化锌、CaSO4、MgSO4、木炭、石墨等。2.2.1.3、分解镍分解镍一般由甲酸镍热分解制得,它是活性低于骨架镍,可以几次反复用于同一反应的非燃烧性催化剂。甲酸催化剂早在1912年的专利[14]中即已出现,它作为工业用的油脂加氢催化剂,久已为人所知。甲酸镍Ni(HCO3)2•2H2O约在1400C开始脱水,无水物约在2100C分解,210-2500C时分解激烈进行,约在2700C分解完毕[149,150]。关于甲酸镍的分解机理,有以下3种报导[149,150]。Ni(HCO3)2•2H2O→Ni+H2+2CO2+2H2ONi(HCO3)2•2H2O→Ni+3H2O+CO2+CO2Ni(HCO3)2•2H2O→2Ni+H2+3CO2+5H2O+CO甲酸镍催化剂的性质仅次于骨架镍催化剂,在油脂类加氢中选择性好,甲酸镍催化剂用于其它有机化合物加氢的实例很少,如稀丙醇加氢[168],芳烃硝基化合物[162,169]苯酚的加氢等。甲酸镍催化剂选择性良好,一个分子存在几个可加氢部位,只要选择合适的反应温度,在按阶段进行的反应中,就可以防止发生副反应,以高得率获取所得产物而且,它不与卤素或磺基反应,所以适用于含有这类成分的化合物加氢[169]。Leicester[178]等研究了Ni的醋酸盐,络酸盐,辛酸盐等的热分解,主要生成物是Ni2O3,极富于多孔性,估计应能作为催化剂使用。草酸镍的研究也很多,它所制得催化剂与甲酸催化剂大体相同,但因其成本高,工业上几乎不用。漆原镍催化剂是为了避免采用Schwenk等取得的用骨架合金和碱催化剂的制造专利[129]而出现的。它是应用过量的镍粉从镍盐中沉淀出镍,使它与雌酮的碱水溶液混合而还原成功,并取得专利[30]。目前通用的漆原镍有:碱处理沉淀而得的漆原镍B(U-Ni-B),用酸处理而得的漆原镍A(N-Ni-A)。用Al作镍盐的还原剂制得的沉淀镍,再用碱处理而得到的漆原镍BA(U-Ni-BA),用酸处理而得到的漆原镍AA(U-Ni-AA)。用还原剂处理镍盐制得的催化剂,因为Ni比H的离子化倾向更强,所以不能用氢气使镍盐溶液析出金属镍,但用某些具有还原能力的化合物却可以达到这一目的,如Parl[183]等用NaBH4溶液还原NiCl2制得的硼化镍催化剂,能在常温常压下进行糠醛、苄腈等加氢,通常比骨架镍略低。若以格氏试剂为还原剂,则生成被认为黑色的镍氢化物,据报导对苯乙烯、丙酮等具有加氢活性。还有范崇正等报道的经化学结构处理后所得含有助剂的超细金属镍(含镍量高于65%wt,比表面积为84m2/g),对羰基的催化加氢,发现Ni对该体系是双向催化作用,并推测镍催化剂表面的“活性中心”,应该是由一族原子共同作用而形成的。超细镍该催化剂是一种超细粒子,粒径大小一般为0.1-0.001微米,具有高表面能和表面活性及易烧结等特点。超细粒子催化剂具有高活性和优良的选择性,但单独存在不稳定,常制成高分散负载型催化剂,其制备方法已有详细综述[1]。当用粒径为300埃的超细镍对环辛二烯加氢制环辛烯的反应时[3],选择性为210,当用普通镍催化剂时,选择性为24,说明使用超细镍时,环辛烯的加氢被极大地抑制了。Pt系催化剂铂是最早应用的加氢催化剂之一,主要是以下几种催化剂Pt黑在碱溶液中用甲醛、肼、甲酸钠等还原剂还原氯铂酸,能制得Pt黑催化剂,具体的方法:在80ml氯铂权溶液(含20g铂,难溶时加入汪时的盐酸)中加入150ml35%甲醛水溶液,冷却至-10℃以下激烈搅拌,向其中滴加入420ml50%的KOH,保持4-6℃以下。滴完后在30min内温度上升至55-60℃,使还原进行完毕。冷却后倾泻法除去不部澄清液,反复操作,去除碱和氯离子再吸滤出沉淀物,在干燥器中干燥。吸滤时如催化剂不被水覆盖,就会起火,在高真空下排气数日后,会失去所含氧而失去活性,但与空气混合后,则又回打电报活性。在常温下,常驻压下,这些催化剂对芳环加氢显示活性。胶体铂一般以铂的离子和金属铂的胶体形式存在,如:在1g氯铂酸钾和1g阿拉伯胶的水溶液中加入48.2ml0.1N的氢氧化钠(也可用溶有1gNaCO3的水溶液),于搅拌下煮沸,热至液体呈暗棕色为止,生成胶体的氢氧化铂。用透析法进行精制并于真空干燥后保存,可直接使用,或预先用氢还原后再使用。胶体铂催化剂一般比氧化催化剂活性弱。Adams氧化铂[80]将3.5g氯铂(4价)酸无水盐置于坩埚中,便溶于10ml水,加入35gNaNO3,激烈搅拌下蒸干,再急剧升温,在350-3700C产生NO2,加热至无气体为止,将温度保持在500-5500C,加热10min放置冷却,用水洗至不含硝酸盐止,并在干燥器中干燥保存,可得约1.6g的PtO2.H2O,即使充分水洗,催化剂中仍含微量的碱,使这种催化剂在氢气中与溶液振荡混合,很容易转变成铂黑而表现活性。不进行预还原也可用于加氢反应。这时在反应初期有数秒到2-3min的吸氢阶段,催化剂活性越强,吸收氢的时间越短。此外,加热温度越高,还原所需时间越长。在无载体铂中,以Adams氧化铂活性最强,被用于各种加氢反应。2.1.1.4负载铂将氯铂(4价)酸溶于水,使渗入适当的载体并进行干燥,用氢或其它还原剂还原后,即得负载铂。Pt/C:最常用的加氢催化剂之一,广泛应用于双键、硝基、羰基等的加氢,而且效率高、选择性好,就是贵金属催化剂价格贵,但是由于是分散型催化剂,仅含1-5%的贵金属量,相对来讲不是很贵,用起来可以承受,特别对于高附加值产品。制备方法:将1g活性炭与40ml无水乙醇,1ml0.2克分子的氯铂(4价)酸溶液一起充分搅合,在室温下用注射器加入5ml1克分子的NaBH4溶液。1分钟后加入4ml6克分子浓度的盐酸溶液以分解过量的NaBH4,即可供使用。在辛烯-1或硝基苯加氢中,该催化剂活性比Adams氧化铂活性要高出数倍。铂/石棉先后用碱和硝酸处理石棉,用温水洗净然后借水浴加热而使氯铂酸(4价)水溶液渗入石棉,冷却后加入35-40%的甲醛水溶液,使深入充分,对每1g铂大约用30ml甲醛水,在冷却的同时,缓慢加入相当于甲醛水重量一半的40-50%NaOH溶液,然后在水浴上加热,使反应完成,用水充分洗净后浸没于稀醋酸中充分洗涤,过滤后再用水洗净,在110℃时干燥,得黑色催化剂,用于苯或吡啶的气相加氢。铂/氧化铝它用于粗汽油的改性,即所谓的铂重整。Haensel[84]在AlCl3溶液中加入氨水,将所得的氧化铝凝胶水洗至残留一定量的氯化物,加入氢氟酸或其铵盐,再与通了H2S的氯铂酸溶液搅拌混合,高温下用氢还原后,成型供用。广泛用于双键、硝基化合物、醛酮的加氢,并具有较好的活性和选择性。均相催化剂:SnCl3--PtCl42-对多种烯烃加氢具有活性,但该催化剂本身很复杂,因为它的性质取决于两者相对浓度、介质酸度温度等,而对其活性物种如[PtH(SnCl3)4]3-、[HPt(SnCl3)2(Et2P)2]-[60]、HPtCN(Pph3)2[61]都不能作活性测试。其催化行为必定与所溶解的能活化底物的组分有关。现已发现,过量的SnCl3-配体降低加氢速率,HCl、HBr、LiCl或LiBr的添加促进加氢。SnCl3-是很强的接受者,因为Sn的5d空轨道大小和能量与Pt5d满轨道相匹配,则配体SnCl3-就减少了Pt上的电子密度,易被亲核物质如H、C=C等所进攻,SnCl3-的强接受π电子性质稳定了Pt(H)(C=C)Xn络合物的稳定性,阻止了Pt2+的还原。2.1.2、钯基催化剂金属钯是催化加氢的能手。在石油化学工业中,乙烯、丙稀、丁稀、异戊二稀等稀烃类是最重要的有机合成原料。由石油化工得到的稀烃含有炔烃及二稀烃等杂质,可将它们转化为稀烃除去。由于形成的稀烃容易被氢化成烷烃,必须选择合适的催化剂。钯催化剂具有很大的活性和极优良的选择性,常用作稀烃选择性加氢催化剂,如Lindlar催化剂(测定在BaSO4上的金属钯,加喹啉以降低其活性)。从乙烯中除去乙炔常用的催化剂是0.03%Pd/Al2O3[1]。文献报道[2],在乙烯中加入CO可以改进Pd/Al2O3对乙炔的加氢选择性,并已工业化。甚至有工艺可将稀烃中的乙炔降至1%以下[3]。常用的加氢反应钯催化剂有Pd、Pd/C、Pd/BaSO4、Pd/硅藻土、PdO2、Ru-Pd/C等。迄今为止,钯催化剂制备的方法有浸渍法、金属蒸汽沉淀法、溶剂化金属原子浸渍法[11]、离子交换法、溶剂—凝胶法等。钯催化剂一般都为负载型催化剂,载体一般为活性炭、γ-Al2O3及目前研究较多的高分子载体和钯基金属膜催化剂。以下主要介绍几类目前研究较多的钯催化剂及相应的催化剂反应现状。2.1.2.1、Pd/CPd/C催化剂是催化加氢最常用的催化剂之一。因为活性炭具有大的表面积、良好的孔结构、丰富的表面基团,同时有良好的负载性能和还原性,当Pd负载在活性炭上,一方面可制得高分散的Pd,另一方面炭能作为还原剂参与反应,提供一个还原环境,降低反应温度和