15.3分式方程(第2课时)八年级上册归纳解分式方程的步骤31112-=.--+xxxx()()例1解方程解:方程两边同乘,得=3.化简,得=3.解得=1.检验:当=1时,=0,=1不是原分式方程的解,所以,原分式方程无解.12-+xx()()212+--+xxxx()()()12-+xx()()2+xxxx解分式方程的步骤:(1)去分母,将分式方程转化为整式方程;(2)解这个整式方程;(3)检验.归纳解分式方程的步骤用框图的方式总结为:分式方程整式方程去分母解整式方程x=a检验x=a是分式方程的解x=a不是分式方程的解x=a最简公分母是否为零?否是归纳解分式方程的步骤课堂练习331112211221--==++---xxxxxx();().练习1解方程:解含字母系数的分式方程解:方程两边同乘,得=.去括号,得=移项、合并同类项,得=∵∴-xa+--abxaxa()+--.abxabxa10-b,1b,1-b()2-.xaba11+=.-abbxa()例2解关于x的方程解含字母系数的分式方程21-=-abaxb.∴所以,是原分式方程的解.21-=-abaxb解:11+=.-abbxa()例2解关于x的方程21-=-abaxb检验:当时,x-a0,课堂练习解:方程两边同乘,得=0.化简,得=0.移项、合并同类项,得=∵0,∴0,001-=+mnmnxx().练习2解关于x的方程1+xx()1+-mxnx()+-mxmnxmnmn-mn()-.xm课堂练习所以,是原分式方程的解.=--mxmn解:∴=--mxmn.001-=+mnmnxx().练习2解关于x的方程检验:当时,=--mxmn10+xx(),列分式方程解应用题例3两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?(1)甲队1个月完成总工程的_____,设乙队单独施工1个月能完成总工程的,那么甲队半个月完成总工程的____,乙队半个月完成总工程的____,两队半个月完成总工程的.131x12x1162+x16列分式方程解应用题例3两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?(2)问题中的哪个等量关系可以用来列方程?(3)你能列出方程吗?列分式方程解应用题例3两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?1x1111362++=.x解:设乙队单独施工1个月能完成总工程的,记总工程量为1,根据工程的实际进度,得方程两边同乘6x,得2x+x+3=6x.列分式方程解应用题例3两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?解:解得x=1.检验:当x=1时6x≠0,x=1是原分式方程的解.由上可知,若乙队单独工作1个月可以完成全部任务,对比甲队1个月完成任务的,可知乙队施工速度快.13课堂练习练习3某车间有甲、乙两个小组,甲组的工作效率比乙组工作效率高25%,因此甲组加工2000个零件所用的时间比乙组加工1800个零件所用的时间少半小时,问甲、乙两组每小时各加工多少个零件?(1)本节课学习了哪些主要内容?(2)解分式方程的一般步骤有哪些?关键是什么?解方程的过程中要注意的问题有哪些?(3)列分式方程解应用题的步骤是什么?与列整式方程解应用题的过程有什么区别和联系?课堂小结