1.1变化率与导数(3课时)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1.1变化率与导数(三课时)1.1.1变化率问题研究某个变量相对于另一个变量变化导数研究的问题的快慢程度.变化率问题问题1气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是34()3Vrr如果将半径r表示为体积V的函数,那么33()4VrV思考:这一现象中,哪些量在改变?变量的变化情况?我们来分析一下:当V从0增加到1时,气球半径增加了气球的平均膨胀率为当V从1增加到2时,气球半径增加了气球的平均膨胀率为(1)(0)0.62()rrdm(1)(0)(/)100.62rrdmL(2)(1)0.16()rrdm(2)(1)(/)210.16rrdmL显然0.620.1633()4VrV随着气球体积逐渐变大,它的平均膨胀率逐渐变小思考?当空气容量从V1增加到V2时,气球的平均膨胀率是多少?2121()()rVrVVV问题2高台跳水在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系h(t)=-4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?hto请计算00.52:ttv和1时的平均速度htoh(t)=-4.9t2+6.5t+10(0.5)(0)00.54.05(/)0.50(2)(1)28.2(/)21hhtvmshhtvms在这段时间里,在1这段时间里,计算运动员在这段时间里的平均速度,并思考下面的问题:49650t探究:(1)运动员在这段时间里是静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?平均变化率定义:若设Δx=x2-x1,Δy=f(x2)-f(x1)则平均变化率为121)()fxxx2f(x这里Δx看作是对于x1的一个“增量”可用x1+Δx代替x2上述问题中的变化率可用式子表示称为函数f(x)从x1到x2的平均变化率2121()()yfxfxxxx1、式子中△x、△y的值可正、可负,但△x的值不能为0,△y的值可以为0xy2、若函数f(x)为常函数时,△y=0理解xxfxxfxxxfxf)()()()(1112123、变式:2121()()yfxfxxxx观察函数f(x)的图象平均变化率表示什么?思考xyoBx2f(x2)Ax1f(x1)f(x2)-f(x1)x2-x1直线AB的斜率y=f(x)2121()()yfxfxxxx小结:1.函数的平均变化率2.求函数的平均变化率的步骤:(1)求函数的增量Δy=f(x2)-f(x1);(2)计算平均变化率1212)()(yxxxfxfx1212)()(yxxxfxfx例(1)计算函数f(x)=2x+1在区间[–3,–1]上的平均变化率;(2)求函数f(x)=x2+1的平均变化率。(1)解:△y=f(-1)-f(-3)=4△x=-1-(-3)=2422yx(2)解:△y=f(x+△x)-f(x)=2△x·x+(△x)222()2yxxxxxxx练习3.已知函数f(x)=-x2+x的图象上的一点A(-1,-2)及临近一点B(-1+Δx,-2+Δy),则Δy/Δx=()A.3B.3Δx-(Δx)2C.3-(Δx)2D.3-ΔxD2.t2质点运动规律s=t+3,则在时间(3,3+t)中相应的平均速度为()9A.6+tB.6+t+C.3+tD.9+tA1.1.2导数的概念一、复习1.平均变化率:平均变化率的几何意义:割线的斜率)0()()()()(111212xxxfxxfxxxfxfxyOABxyY=f(x)x1x2f(x1)f(x2)x2-x1=△xf(x2)-f(x1)=△y理解:1,式子中△x、△y的值可正、可负,但的△x值不能为0,△y的值可以为02,若函数f(x)为常函数时,△y=03,变式xxfxxfxxxfxf)()()()(111212求函数的平均变化率的步骤:(1)求函数的增量Δy=f(x2)-f(x1);(2)计算平均变化率yx121)()fxxx2f(x?,?,.).tan(.,时的瞬时速度是多少比如度呢如何求运动员的瞬时速那么度在某时刻的瞬时速她他度不一定能反映运动员的平均速的速度称为我们把物体在某一时刻是不同的度运动员在不同时刻的速在高台跳水运动中2tvelociyeousins瞬时速度.,,,.,;,.,,,,,.可以得到如下表格内平均速度和区间计算区间之后在时当之前在时当但不为也可以是负值正值可以是是时间的改变量任意取一个时刻之前或之后在附近的情况我们先考察vtttttttttt22222202200222二.新课讲授1.瞬时速度△t0时,在[2+△t,2]这段时间内△t0时,在[2,2+△t]这段时间内1.139.4tv1.139.4tv13.051v当△t=–0.01时,13.149v当△t=0.01时,0951.13v当△t=–0.001时,1049.13v当△t=0.001时,13.09951v当△t=–0.0001时,13.10049v当△t=0.0001时,099951.13v△t=–0.00001,100049.13v△t=0.00001,13.0999951v△t=–0.000001,13.1000049v△t=0.000001,…………105.69.4)(2ttth当Δt趋近于0时,平均速度有什么变化趋势?..,,,,1132220个确定的值平均速度都趋近于一时一边趋近于还是从大于的一边从小于即无论时趋近于当我们发现tt./.,.,||,smttvt11322时的瞬时速度是员在运动因此时的瞬时速度就无限趋近于速度平均无限变小时时间间隔从物理的角度看..,,.lim,11302113220定值趋近于确平均速度时趋势近于当表示我们用为了表述方便vttththt..时的极限趋近于当是我们称确定值022113tthth探究:1.运动员在某一时刻t0的瞬时速度怎样表示?2.函数f(x)在x=x0处的瞬时变化率怎样表示?5.68.9)5.68.99.4(lim)5.68.9()(9.4lim)()(lim000020000ttttttttthtthtttxxxfxxfxxylim)()Δ(lim0000定义:函数y=f(x)在x=x0处的瞬时变化率是xxxfxxfxxylim)()Δ(lim0000称为函数y=f(x)在x=x0处的导数,记作0000(Δ)()()lim.xfxxfxfxx)(0xf或,即0|xxy。其导数值一般也不相同的值有关,不同的与000)(.1xxxf的具体取值无关。与xxf)(.20一概念的两个名称。瞬时变化率与导数是同.3由导数的意义可知,求函数y=f(x)在点x0处的导数的基本方法是:00(1)()();yfxxfx求函数的增量00()()(2);fxxfxyxx求平均变化率00(3)()lim.xyfxx取极限,得导数一差、二比、三极限例1.求y=x2在点x=1处的导数.解:222)(21)1(xxxyxxxxxy2)(222|2)2(limlim1'00xxxyxxyf(x)=x2–7x+15(0≤x≤8).计算x=2时的导数.xfxf)2()2(根据导数的定义,37)(42xxxxx所以,.3)3(limlim)2(00xxffxx练习二、函数的导数:函数在点处的导数、导函数、导数之间的区别与联系。1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。2)函数的导数,是指某一区间内任意点x而言的,就是函数f(x)的导函数3)函数在点处的导数就是导函数在处的函数值,这也是求函数在点处的导数的方法之一。0x0()fx()fx0xx0x0()fx()fx0x0()fx0x()fx)2('),1('),(',)(22ffxfxxf求:设例的值代入求得导数值。再将自变量义求思路:先根据导数的定),('xfxxxxxxxxxxxfxxfxfxxx2)2(lim)(lim)()(lim)('02200=解:由导数的定义有422)(')2('2)1(2)(')1('21xxxffxff=.,,62).80(157:,.,320并说明它们的意义的瞬时变化率原油温度时和第计算第为单位的温度原油时如果在和加热行冷却油进对原需要品产柴油、塑胶等各种不同将原油精炼为汽油、例hhxxxxfCxh,根据导数的定义xfxfxy22.'6f和262',fhh就是原油温度的瞬时变化率时和第在第解xxx152721527222,3742xxxxx,33limlim2,00'xxyfxx所以.'56f同理可得.运算过程请同学们自己完成具体0026,35.2,3/;6,5/.hhhChhCh在第与第时原油温度的瞬时变化率分别为与它说明:在第附近原油温度大约以的速率下降在附近原油温度大约以的速率上升0'0,.fxx一般地反映了原油温度在时刻附近的变化情况1.1.3导数的几何意义xxfxxflimxylimxf0x0x000-+==即:000xxyfxxxfxy=函数=在=处的导数,记作:或表示“平均变化率”xx-fx+xf=00xy附近的变化情况。=反映了函数在处的瞬时变化率,=在表示函数=000x0xxxxxfxylimxf2一、复习1、导数的定义其中:⑴其几何意义是表示曲线上两点连线(就是曲线的割线)的斜率。其几何意义是?P1P2P3P4PTTTTPPxfyxfyxfyxfyOyxOyxOyxOyx211.图1234?,,,,,,,.什么是趋势化变的割线时趋近于点沿着曲线当点图如察观nnnnPPxfxPxfnxfxP004321211PQoxyy=f(x)割线切线T1、曲线上一点的切线的定义结论:当Q点无限逼近P点时,此时直线PQ就是P点处的切线PT.点P处的割线与切线存在什么关系?新授xoyy=f(x)设曲线C是函数y=f(x)的图象,在曲线C上取一点P(x0,y0)及邻近一点Q(x0+△x,y0+△y),过P,Q两点作割线,当点Q沿着曲线无限接近于点P点P处的切线。即△x→0时,如果割线PQ有一个极限位置PT,那么直线PT叫做曲线在曲线在某一点处的切线的定义△x△yPQTxoyy=f(x)P(x0,y0)Q(x1,y1)M△x△y割线与切线的斜率有何关系呢?xxfxxfkPQ)()(xy=即:当△x→0时,割线PQ的斜率的极限,就是曲线在点P处的切线的斜率,xxfxxfxyxx)()(k0000limlim=所以:当点Q沿着曲线无限接近点P即Δx→0时,割线PQ有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线.设切

1 / 48
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功