实用标准文档大全奥数专题时钟问题第一部分基础知识点部分【开门见山这一段话多半录自百度百科】时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。不同在于时钟问题有别于其他行程问题是:它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。对于正常的时钟:1.整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。分针速度:每分钟走1小格,每分钟走6度;时针速度:每分钟走十二分之一小格,每分钟走0.5度速度差:每分钟6-0.5=5.5度;每分钟1-1/12=11/12小格2.需要注意的是在许多时钟问题中,往往遇到各种“怪钟”、“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,但是在题目中总会给出标准时钟与特殊钟表的比例关系,在独立分析的基础上必须要学会十字交叉法。当你做过一个题目后,这个十字交叉法其实没有啥精妙之处,与浓度问题中的十字交叉类似,实际就是个一元一次方程变种格式而已。【温故知新】追击问题的三个特点:同时出发;同向而行;同时停止。追击问题的重要公式:路程差除以时间差=追击时间。常用的等量关系:快者路程-慢者路程=距离;在实际题目中,路程差相对变化多一些,主要的类型有:重合问题(路程)例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65又11分之5分。认识钟面:时钟问题解法与算法公式:时钟问题的关键点:实用标准文档大全时针每小时走30度;分针每分钟走6度分针走一分钟(转6度)时,时针走0.5度,分针与时针的速度差为5.5度。***************************************************************************第二部分以知促行【例题1】从12时到13时,钟的时针与分针可成直角的机会有:A.1次B.2次C.3次D.4次【解析】时针与分针成直角,即时针与分针的角度差为90度或者为270度,理论上讲应为2次,还要验证:根据角度差/速度差=分钟数,可得90/5.5=16又4/11<60,表示经过16又4/11分钟,时针与分针第一次垂直;同理,270/5.5=49又1/11<60,表示经过49又1/11分钟,时针与分针第二次垂直。经验证,选B可以。【例题2】在某时刻,某钟表时针在10点到11点之间,此时刻再过6分钟后的分针和此时刻3分钟前的时针正好方向相反且在一条直线上,则此时刻为----。【解法1】时针10—11点之间的刻度应和分针20—25分钟的刻度相对,所以要想时针与分针成一条直线,则分针必在这一范围,而选项中加上6分钟后在这一范围的只有10点15分,所以【解法2】常规方法设此时刻为X分钟。则6分钟后分针转的角度为6(X+6)度,则此时刻3分钟前的时针转的角度为0.5(X+3)度,以0点为起始来算此时时针的角度为0.5(X—3)+10×30度。所谓“时针与分针成一条直线”即0.5(X—3)+10×30—6(X+6)=180度,解得X=15分钟。著名数学难题:时钟的时针和分针(了解)由时钟的时针与分针的特殊关系,产生了许多有趣的数学问题,介绍几例,研究解法。例1在钟表正常走动的时候,有多少个时针和分针重合的位置?它们分别表示什么时刻?解:钟表上把一个圆分成了60等分,假如时针从12点开始走过了x个刻度,那么分针就要走过12x个刻度,即分针走了12x分钟。两针在12点重合后,当分针比时针多走60个刻度时,出现第一次分针和时针重合;当分针又比时针多走60个刻度时,出现第二次分针和时针重合;……直至回到12点两针又重合后,又开始重复出现以上情况。用数学式子来表示,即为:实用标准文档大全12x-x=60m,其中m=1,2,….度为1小时,对分针来说1个刻度就是1分钟。所以,12点以后出现第四、五、六、七、八、九、十次重合的时间不难算出它们:如果用m=11代入,解得x=60,出现第十一次重合的时间是12点,这样就回到了开始的时刻,可见,以上共有11次出现两针重合的时间。1、二点到三点钟之间,分针与时针什么时候重合?分析:两点钟的时候,分针指向12,时针指向2,分针在时针后5×2=10(小格)。而分针每分钟可追及1-=(小格),要两针重合,分针必须追上10小格,这样所需要时间应为(10÷)分钟。解:(5×2)÷(1-)=10÷=10(分)答:2点10分时,两针重合。2、在4点钟至5点钟之间,分针和时针在什么时候在同一条直线上?分析:分针与时针成一条直线时,两针之间相差30小格。在4点钟的时候,分针指向12,时针指向4,分针在时针后5×4=20(小格)。因分针比时针速度快,要成直线,分针必须追上时针(20小格)并超过时针(30小格)后,才能成一条直线。因此,需追及(20+30)小格。解:(5×4+30)÷(1-)=50÷=54(分)答:在4点54分时,分针和时针在同一条直线上。3、在一点到二点之间,分针什么时候与时针构成直角?分析:分针与时针成直角,相差15小格(或在前或在后),一点时分针在时针后5×1=5小格,在成直角,分针必须追及并超过时针,才能构成直角。所以分针需追及(5×1+15)小格或追及(5×1+45)小格。解:(5×1+15)÷(1-)=20÷=21(分)或(5×1+45)÷(1-)=50÷=54(分)答:在1点21分和1点54分时,两针都成直角。4、星期天,小明在室内阳光下看书,看书之前,小明看了一眼挂钟,发现时针与分针正好处在一条直线上。看完书之后,巧得很,时针与分针又恰好在同一条直线上。看书期间,小明听到挂钟一共敲过三下。(每整点,是几点敲几下;半点敲一下)请你算一算小明从几点开始看书?看到几点结束的?分析:连半点敲声在内,一共敲了三下,说明小明看书的时间是在中午12点以后。12点以后时针与分针:第一次成一条直线时刻是:(0+30)÷(1-)=30÷=32(分)即12点32分。第二次成一条直线时刻是:(5×1+30)÷(1-)=35÷=38(分)即1点38分。第三次成一条直线的时刻是:(5×2+30)÷(1-)=40÷=43(分)即2点43分。如果从12点32分开始,到1点38分,只敲2下,到2点43分,就共敲5下(不合题意)如果从1点38分开始到2点43分,共敲3下。因此,小明应从1点38分开始看书,到2点43分时结束的。5、此挂钟走到5点30分,按标准时间还要走27分,因它的速度是标准时钟速度的,实际走完这27分所要时间应是27÷。解:5×(17-12)=27(分)27÷=30(分)答:再经过30分钟,该挂钟才能走到5点30分。解题关键:时钟问题属于行程问题中的追及问题。钟面上按“时”分为12大格,按“分”分为60小格。每小时,时针走1大格合5小格,分针走12大格合60小格,时针的转速是分针的,两针速度差是分针的速度的,分针每小时可追及。实用标准文档大全【其他例题】例1:从5时整开始,经过多长时间后,时针与分针第一次成了直线?5时整时,分针指向正上方,时针指向右下方,此时两者之间间隔为25个小格(表面上每个数字之间为5个小格),如果要成直线,则分针要超过时针30个小格,所以在此时间段内,分针一共比时针多走了55个小格。由每分钟分针比时针都走11/12个小格可知,此段时间为55/(11/12)=60分钟,也就是经过60分钟时针与分针第一次成了直线。例2:从6时整开始,经过多少分钟后,时针与分针第一次重合?6时整时,分针指向正上方,时针指向正下方,两者之间间隔为30个小格。如果要第一次重合,也就是两者之间间隔变为0,那么分针要比时针多走30个小格,此段时间为30/(11/12)=360/11分钟。例3:在8时多少分,时针与分针垂直?8时整时,分针指向正上方,时针指向左下方,两者之间间隔为40个小格。如果要两者垂直,有两种情况,一个是第一次垂直,此时两者间隔为15个小格(分针落后时针),也就是分针比时针多走了25个小格,此段时间为25/(11/12)=300/11分钟;另一次是第二次垂直,此时两者间隔仍为15个小格(但分针超过时针),也就是分针比时针多走了55个小格,此段时间为55/(11/12)=60分钟,时间变为9时,超过了题意的8时多少分要求,所以在8时300/11分时,分针与时针垂直。由上面三个例题可以看出,求解此类问题(经过多少时间,分针与时间成多少夹角)时,采用上述方法是非常方便、简单、快捷的,解题过程形象易懂,结果正确率高,是一种非常好的方法。解决此类问题的一个关键点就是抓住分针比时针多走了多少个小格,而不论两者分别走了多少个小格。下面再通过几个例题来介绍这种方法的用法和要点。关于时钟的问题有:求某一时刻时针与分针的夹角,两针重合,两针垂直,两针成直线等类型。要解答时钟问题就要了解、熟悉时针和分针的运动规律和特点。一个钟表一圈有60个小格,这里计算就以小格为单位。1分钟时间,分针走1个小格,时针指走了1/60*5=1/12个小格,所以每分钟分针比时针多走11/12个小格,以此作为后续计算的基础,对于解决类似经过多长时间时针、分针垂直或成直线的问题非常方便、快捷。例4:从9点整开始,经过多少分,在几点钟,时针与分针第一次成直线?9时整时,分针指向正上方,时针指向正右方,两者之间间隔为45个小格。如果要第一次成直线,也就是两者之间间隔变为30个小格,那么分针要比时针多走15个小格,此段时间为15/(11/12)=180/11分钟。例5:一个指在九点钟的时钟,分针追上时针需要多少分钟?9时整时,分针指向正上方,时针指向正右方,两者之间间隔为45个小格。如果要分针追上时针,也就是两者之间间隔变为0个小格,那么分针要比时针多走45个小格,此段时间为45/(11/12)=540/11分钟。例6:时钟的分针和时针现在恰好重合,那么经过多少分钟可以成一条直线?时针和分针重合,也就是两者间隔为0个小格,如果要成一条直线,也就是两者间隔变为30个小格,那么分针要比时针多走30个小格,此段时间为30/(11/12)=360/11分钟。1.设时钟一圈分成了12格,则时针每小时转1格,分针每小时转12格。2.时针一昼夜(24小时)转2圈,分针一昼夜转24圈。3.钟面上每两格之间为30°,时针与分针成某个角度一般都有对称的两种情况。实用标准文档大全4.时针与分针一昼夜重合22次,垂直44次,成180°也是22次。【例1】清晨5点时,时钟的时针和分针的夹角是多少度?()A.30度B.60度C.90度D.150度[答案]D[解析]清晨5点时,时针和分针相差5格,则5×30°=150°。【例2】中午12点整时,钟面上时针与分针完全重合。那么到当晚12点时,时针与分针还要重合了多少次?()A.10B.11C.12D.13[答案]B[解一]从中午12点到晚上12点,时针走了1圈,分针走了12圈,比时针多走了11圈。因此,时针与分针重合了11次。选择B。[解二]根据基本知识点:由于时针和分针24小时内重合22次,所以12小时内重合11次。【例3】小李开了一个多小时会议,会议开始时看了手表,会议结束时又看了手表,发现时针和分针恰好互换了位置。问这次会议大约开了1小时多少分?()#中国公务员考试信息网A.51B.47C.45D.43[答案]A[解析]根据题意,会议开了1个多小时,那么分针应该转了1圈多不到2圈,时针转了1格多不到2格。由于“时针和分针恰好互换了位置”,所以时针和分针所转角度之和应该是整整两圈。假设这个过程经过了T小时,时针12小时转一圈,那么T小时应该转了T/12圈;分针1小时转一圈,T小时应该转了T圈,那么T+T/12=2,得到T=24/13小时,约合1小时51分。【例4】某时刻钟表时针在10点到11点之间,此时刻再过6分钟后分针和此时刻3分钟前的时针正好方向相反且在一条直线上,则此时刻为几点几分?()A.10点15分B.10点19分C.10点20分D.10点25分[答案]A[解