第四章:半导体传感器

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第3章半导体传感器磁敏传感器的应用范围可分为模拟用途和数字用途两种。例如利用霍尔传感器测量磁场强度,用磁敏电阻、磁敏二极管作无接触式开关等。3.1.1霍尔传感器霍尔传感器是利用霍尔效应实现磁电转换的一种传感器,有普通型、高灵敏度型、低温度系数型、测温测磁型和开关式的霍尔元件。由于霍尔传感器具有灵敏度高、线性度好、稳定性高、体积小和耐高温等特件应用于非电量测量、自动控制、计算机装置和现代军事技术等各个领域。3.1磁敏式传感器1.霍尔效应长为L、宽为b、厚为d的导体(或半导体)薄片,被置于磁感应强度为B的磁场中(平面与磁场垂直),在与磁场方向正交的两边通以控制电流I,则在导体另外两边将产生一个大小与控制电流I和磁感应强度B乘积成正比的电势UH,且UH=KHIB,其中KH为霍尔元件的灵敏度。这一现象称为霍尔效应,该电势称为霍尔电势,半导体薄片就是霍尔元件。IHUI2.工作原理霍尔效应是导体中自由电荷受洛仑兹力作用而产生的。设霍尔元件为N型半导体,当它通以电流I时,半导体中的电子受到磁场中洛仑兹力FL的作用,其大小为式中υ为电子速度,B为垂直于霍尔元件表面的磁感应强度。在FL的作用下,电子向垂直于B和υ的方向偏移,在器件的某一端积聚负电荷,另一端面则为正电荷积聚。电荷的聚积必将产生静电场,即为霍尔电场,该静电场对电子的作用力为FE与洛仑兹力方向相反,将阻止电子继续偏转,其大小为IHUI式中EH为霍尔电场,e为电子电量,UH为霍尔电势。当FL=FE时,电子的积累达到动平衡,即bUeBeH所以。设流过霍尔元件的电流为I时,BbUH)(enbddtdQI式中bd为与电流方向垂直的截面积,n为单位体积内自由电子数(载流子浓度)。则nedIBUH令则neRH1dIBRUHHKH为霍尔元件的灵敏度。由上述讨论可知,霍尔元件的灵敏度不仅与元件材料的霍尔系数有关,还与霍尔元件的几何尺寸有关。一般要求霍尔元件灵敏度越大越好,霍尔元件灵敏度的公式可知,霍尔元件的厚度d与KH成反比。RH则被定义为霍尔传感器的霍尔系数。由于金属导体内的载流子浓度大于半导体内的载流子浓度,所以,半导体霍尔系数大于导体。3.霍尔系数及灵敏度dRKHHIBKUHH令则IBdneIBdnenedIBUH111霍尔电势二、霍尔元件的主要技术参数1.额定功耗P0霍尔元件在环境温度T=25℃时,允许通过霍尔元件的控制电流I和工作电压V的乘积即为额定功耗。一般可分为最小、典型、最大三档,单位为mw。当供给霍尔元件的电压确定后,根据额定功耗可以知道额定控制电流I。有些产品提供额定控制电流和电压,不给出额定功耗。2.输入电阻Ri和输出电阻R0Ri是指流过控制电流的电极(简称控制电极)间的电阻值,R0是指霍尔元件的霍尔电势输出电极(简称霍尔电极)间的电阻,单位为Ω。可以在无磁场即B=0时,用欧姆表等测量。3.不平衡电势U0在额定控制电流I之下,不加磁场时,霍尔电极间的空载霍尔电势称为不平衡(不等)电势,单位为mV。不平衡电势和额定控制电流I之比为不平衡电阻r0。4.霍尔电势温度系数α在一定的磁感应强度和控制电流下,温度变化1℃时,霍尔电势变化的百分率称为霍尔电势温度系数α,单位为1/℃。5.内阻温度系数β霍尔元件在无磁场及工作温度范围内,温度每变化1℃时,输入电阻只Ri与输出电阻R0变化的百分率称为内阻温度系数β,单位为1/℃。一般取不同温度时的平均值。6.灵敏度KH其定义向前述。有时某些产品给出无负载时灵敏度(在某一控制电流和一定强度磁场中、霍尔电极间开路时元件的灵敏度)。三、霍尔元件连接方式和输出电路1.基本测量电路控制电流I由电源E供给,电位器W调节控制电流I的大小。霍尔元件输出接负载电阻RL,RL可以是放大器的输入电阻或测量仪表的内阻。由于霍尔元件必须在磁场与控制电流作用下,才会产生霍尔电势UH,所以在测量中,可以把I与B的乘积、或者I,或者B作为输入信号,则霍尔元件的输出电势分别正比于IB或I或B。2.连接方式为了获得较大的霍尔输出电势,可以采用几片叠加的连接方式。下图(a)为直流供电,控制电流端并联输出串联。下图(b)为交流供电,控制电流端串联变压器叠加输出。3.霍尔电势的输出电路霍尔器件是一种四端器件,本身不带放大器。霍尔电势一般在毫伏量级,实际使用中必须加差分放大器。霍尔元件大体分为线性测量和开关状态两种使用方式,因此,输出电路有如右图所示两种结构。当霍尔元件作线性测量时,最好选用灵敏度低一点、不平衡电势U0小、稳定性和线性度优良的霍尔元件。例如,选用KH=5mV/mA·kGs,控制电流为5mA的霍尔元件作线性测量元件测量1Gs~10kGs的磁场,则霍尔器件最低输出电势UH为UH=5mV/mA·kGs×5mA×10-3kGs=25μV最大输出电势为UH=5mV/mA·kGs×5mA×10kGs=250mV故要选择低噪声、低漂移的放大器作为前级放大。当霍尔元件作开关使用时,要选择灵敏度高的霍尔器件。例如,KH=20mV/mA·kGs,如果控制电流为2mA,施加一个300Gs的磁场,则输出霍尔电势为UH=20mV/mA·kGs×2mA×300Gs=120mV这时选用一般的放大器即可满足。四、霍尔元件的测量误差和补偿方法霍尔元件在实际应用时,存在多种因素影响其测量精度,造成测量误差的主要因素有两类:一类是半导体固有特性;另一类为半导体制造工艺的缺陷。其表现为零位误差和温度引起的误差。1.零位误差及补偿方法零位误差是霍尔元件在加控制电流或不加外磁场时,而出现的霍尔电势称为零位误差。不平衡电势U0是主要的零位误差。因为在工艺上难以保证霍尔元件两侧的电极焊接在同一等电位面上。如下图(a)所示。当控制电流I流过时,即使末加外磁场,A、B两电极此时仍存在电位差,此电位差被称为不等位电势(不平衡电势)U0。下图给出几种常用的补偿方法。为了消除不等位电势,可在阻值较大的桥臂上并联电阻,如下图(a)所示,或在两个桥臂上同时并联如下图(b)、(c)所示的电阻。2.温度误差及其补偿由于载流子浓度等随温度变化而变化,因此会导致霍尔元件的内阻、霍尔电势等也随温度变化而变化。这种变化程度随不同半导体材料有所不同。而且温度高到一定程度,产生的变化相当大。温度误差是霍尔元件测量中不可忽视的误差。针对温度变化导致内阻(输入、输出电阻)的变化,可以采用对输入或输出电路的电阻进行补偿。(1)利用输出回路并联电阻进行补偿在输入控制电流恒定的情况下,如果输出电阻随温度增加而增大,霍尔电势增加;若在输出端并联一个补偿电阻RL,则通过霍尔元件输出电阻输出电阻(内阻)R0的电流增大,内阻压降亦增大增大,输出电压将会减小。只要适当选据补偿电阻RL,就可达到补偿的目的。在温度影响下,元件的输出电阻从Rt0变到Rt,输出电阻Rt和电势UHt应为Rt=Rt0(1+βt);UHt=UHt0(1+αt)式中β、α为霍尔元件的输出电势UHt和输出电阻Rt的温度系数。此时RL上的电压则为LtLHtLtRtRtRUU)1()1(00补偿电阻RL上电压随温度变化最小的条件为00tLLtRRdtdU因此当知道霍尔元件的β、α及Rt0时,便可以计算出能实现温度补偿的电阻RL的值。因该指出,这种补偿方法,不能完全消除温度误差。(2)利用输入回路的串联电阻进行补偿霍尔元件的控制回路用稳压电源E供电,其输出端处于开路工作状态,当输入回路串联适当的电阻R时,霍尔电势随温度的变化可得到补偿。当温度增加时,霍尔电势的增加值为ΔUH=UHt0αt;另一方面,元件的输入电阻随温度的增加值为ΔRi=Rit0βt。用稳压源供电时,控制电流和输出电势的减小量为)1(000tRRtRIIititt)1()1(000tRRttRUUititHH全补偿条件:HHUU)1()(0tRRit在霍尔元件的β、α为已知的条件下,即可求得R与Rt0的关系。但是,R仍然是温度t的函数。实际的补偿电路如图9-8(c)所示。调节电位器W1可以消除不等位电势。电桥由温度系数低的电阻构成,在某一桥臂电阻上并联热敏电阻Rt。当温度变化时,热敏电阻将随温度变化而变化,使补偿电桥的输出电压UH相应变化,只要仔细调节,即可使其输出电压UH与温度基本无关。3.1.2磁敏电阻器磁敏电阻器是基于磁阻效应的磁敏元件。磁敏电阻的应用范围比较广,可以利用它制成磁场探测仪、位移和角度检测器、安培计以及磁敏交流放大器等。一、磁阻效应当一载流导体置于磁场中,其电阻会随磁场而变化,这种现象被称为磁阻效应。当温度恒定时,在磁场内,磁阻与磁感应强度B的平方成正比。如果器件只有在电子参与导电的简单情况下,理论推导出来的磁阻效应方程为式中ρB—磁感应强度为B时的电阻率;ρ0—零磁场下的电阻率;μ—电子迁移率;B—磁感应强度。当电阻率变化为Δρ=ρB-ρ0时,则电阻率的相对变化为:Δρ/ρ0=0.273μ2B2=Kμ2B2。由此可知,磁场一定时迁移率越高的材料(如InSb、InAs和NiSb等半导体材料),其磁阻效应越明显。)273.01(220BB二、磁敏电阻的结构磁敏电阻通常使用两种方法来制作:一种是在较长的元件片上用真空镀膜方法制成,如上图(a)所示的许多短路电极(光栅状)的元件;另一种是在结晶制作过程中有方向性地析出金属而制成磁敏电阻,如上图(b)所示。除此之外,还有圆盘形,中心和边缘处各有一电极,如上图(c)所示。磁敏电阻大多制成圆盘结构。磁阻效应除了与材料有关外,还与磁敏电阻的形状有关。若考虑其形状的影响。电阻率的相对变化与磁感应强度和迁移率的关系可表达为式中:L、b分别为电阻的长和宽;为形状效应系数。在恒定磁感应强度下,其长度L与宽度b比越小,则Δρ/ρ0越大。bLfBK1)(20bLf各种形状的磁敏电阻,其磁阻与磁感应强度的关系如右图所示。由图可见,圆盘形样品的磁阻最大。磁敏电阻的灵敏度一般是非线性的,且受温度影响较大;因此,使用磁敏电阻时.必须首先了解如下图所示的持性曲线。然后,确定温度补偿方案。3.1.3磁敏二极管和磁敏三极管霍尔元件和磁敏电阻均是用N型半导体材料制成的体型元件。磁敏二极管和磁敏三极管是PN结型的磁电转换元件,它们具有输出信号大、灵敏度高、工作电流小和体积小等特点,它们比较适合磁场、转速、探伤等方面的检测和控制。一、磁敏二极管的结构和工作原理1.结构磁敏二极管的P型和N型电极由高阻材料制成,在P、N之间有一个较长的本征区I,本征区I的一面磨成光滑的复合表面(为I区),另一回打毛,设置成高复合区(为r区),其目的是因为电子—空穴对易于在粗糙表面复合而消失。当通过正向电流后就会在P、I、N结之间形成电流。由此可知,磁敏二极管是PIN型的。当磁敏二极管末受到外界磁场作用时,外加如下图(a)所示的正偏压,则有大量的空穴从r区通过I区进入N区,同时也有大量电子注入P区而形成电流。只有少量电子和空穴在I区复合掉。当磁敏二极管受到如下图(b)所示的外界磁场H+(正向磁场)作用时,则电子和空穴受到洛仑兹力的作用而向r区偏转,由于r区的电子和空穴复合速度比光滑面I区快,因此,形成的电流因复合速度加快而减小。磁场强度越强,电子和空穴受到洛仑兹力就越大,单位时间内进入由于r区而复合的电子和空穴数量就越多,载流子减少,外电路的电流越小。当磁敏二极管受到如右图(b)所示的外界磁场片H-(反向磁场)作用时,则电子和空穴受到洛仑兹力作用而向I区偏移,由于电子、空穴复合率明显变小,则外电路的电流变大。利用磁敏二极管的正向导通电流随磁场强度的变化而变化的特性,即可实现磁电转换。3.磁敏二极管的主要特性(1)磁电特性在给定条件下,磁敏二极管输出的电压变化与外加磁场的关系称为磁敏二极管的磁电持性。磁敏二极管通常有单只和互补两种使用方式。它们的磁电特性如下图所示。出图可知,单只使用时,正向磁灵敏度大于反向;互补使用时,正、反向磁灵敏度曲线对称,且在

1 / 62
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功