一、温故知新(一)圆锥曲线的统一定义平面内,到定点F的距离与到定直线l的距离比为常数e的点的轨迹,当e>1时,是双曲线.当0e1时,是椭圆;(定点F不在定直线l上)当e=1时,是抛物线.(二)抛物线的标准方程(1)开口向右y2=2px(p0)(2)开口向左y2=-2px(p0)(3)开口向上x2=2py(p0)(4)开口向下x2=-2py(p0)CM·Fl·e=1H在平面内,与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫抛物线.点F叫抛物线的焦点,直线l叫抛物线的准线d为M到l的距离准线焦点d的轨迹是抛物线。则点若MMNMF,1即:︳︳︳︳标准方程图形焦点准线xyOFly2=2pxy2=-2pxxyOFlx2=2pyx2=-2pyxyOFlxyOFl(,0)2pF(0,)2pF2px(0,)2pF(,0)2pF2px2py2py1.抛物线x2=4y上一点A的纵坐标为4,则点A与抛物线焦点的距离为()A.2B.3C.4D.5解析:点A与抛物线焦点的距离就是点A与抛物线准线的距离,即4-(-1)=5.答案:D2.抛物线y=ax2的准线方程是y-2=0,则a的值是()A.18B.-18C.8D.-8解析:将抛物线的方程化为标准形式x2=1ay,其准线方程是y=-14a=2,a=-18.答案:Byox)0,2(pFP(x,y)一、抛物线的几何性质抛物线在y轴的右侧,当x的值增大时,︱y︱也增大,这说明抛物线向右上方和右下方无限延伸。1、范围由抛物线y2=2px(p0)220pxy而0p0x所以抛物线的范围为0x(,)xy关于x轴对称(,)xy由于点也满足,故抛物线(p0)关于x轴对称.(,)xyy2=2pxy2=2px2、对称性yox)0,2(pFP(x,y)定义:抛物线和它的轴的交点称为抛物线的顶点。yox)0,2(pFP(x,y)由y2=2px(p0)当y=0时,x=0,因此抛物线的顶点就是坐标原点(0,0)。注:这与椭圆有四个顶点,双曲线有两个顶点不同。3、顶点离心率4、yox)0,2(pFP(x,y)抛物线上的点与焦点的距离和它到准线的距离之比,叫做抛物线的离心率。由定义知,抛物线y2=2px(p0)的离心率为e=1.5、开口方向yox)0,2(pFP(x,y)抛物线y2=2px(p0)的开口方向向右。pyxpyxpxypxy22222222+X,x轴正半轴,向右-X,x轴负半轴,向左+y,y轴正半轴,向上-y,y轴负半轴,向下特点:1.抛物线只位于半个坐标平面内,虽然它可以无限延伸,但它没有渐近线;2.抛物线只有一条对称轴,没有对称中心;3.抛物线只有一个顶点、一个焦点、一条准线;4.抛物线的离心率是确定的,为1;思考:抛物线标准方程中的p对抛物线开口的影响.yox)0,2(pFP(x,y)4321-1-2-3-4-5-2246810y2=xy2=xy2=2xy2=4x21P越大开口越大(二)归纳:抛物线的几何性质图形方程焦点准线范围顶点对称轴elFyxOlFyxOlFyxOlFyxOy2=2px(p0)y2=-2px(p0)x2=2py(p0)x2=-2py(p0))0,2(pF)0,2(pF)2,0(pF)2,0(pF2px2px2py2pyx≥0y∈Rx≤0y∈Ry≥0x∈Ry≤0x∈R(0,0)x轴y轴1xyOFABy2=2px2p过焦点而垂直于对称轴的弦AB,称为抛物线的通径,利用抛物线的顶点、通径的两个端点可较准确画出反映抛物线基本特征的草图.pp,2pp,2|AB|=2p通径5、2p越大,抛物线张口越大.P越大,开口越开阔1、已知抛物线的顶点在原点,对称轴为x轴,焦点在直线3x-4y-12=0上,那么抛物线通径长是.2、一个正三角形的三个顶点,都在抛物线上,其中一个顶点为坐标原点,则这个三角形的面积为。24yx16483课堂练习:连接抛物线任意一点与焦点的线段叫做抛物线的焦半径。|PF|=x0+p/2焦半径公式:焦半径6、xyOFPx0p/2焦半径及焦半径公式抛物线上一点到焦点的距离P(x0,y0)在y2=2px上,P(x0,y0)在y2=-2px上,P(x0,y0)在x2=2py上,P(x0,y0)在x2=-2py上,因为抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(2,),22解:所以设方程为:)0(22ppxy又因为点M在抛物线上:所以:2(22)22p2p因此所求抛物线标准方程为:24yx例3:已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(2,),求它的标准方程.三、典例精析24yx作图:(1)列表(在第一象限内列表)x01234…y…(2)描点:022.83.54(3)连线:11xyO课堂练习:求适合下列条件的抛物线的方程:(1)顶点在原点,焦点F为(0,5);(2)顶点在原点,关于x轴对称,并且经过点M(5,-4).20xy2165yx2探照灯、汽车前灯的反光曲面,手电筒的反光镜面、太阳灶的镜面都是抛物镜面。抛物镜面:抛物线绕其对称轴旋转而成的曲面。灯泡放在抛物线的焦点位置上,通过镜面反射就变成了平行光束,这就是探照灯、汽车前灯、手电筒的设计原理。平行光线射到抛物镜面上,经镜面反射后,反射光线都经过抛物线的焦点,这就是太阳灶能把光能转化为热能的理论依据。例2:探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处。已知灯口圆的直径为60cm,灯深40cm,求抛物线的标准方程和焦点位置。xyOBA(40,30)解:所在平面内建立直角坐标系,使反射镜的顶点与原点重合,x轴垂直于灯口直径.在探照灯的轴截面设抛物线的标准方程为:y2=2px由条件可得A(40,30),代入方程得:302=2p·40解之:p=445故所求抛物线的标准方程为:y2=x,245焦点为(,0)84524l例3:图中是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水下降1米后,水面宽多少?xoAy若在水面上有一宽为2米,高为1.6米的船只,能否安全通过拱桥?思考题2BA(2,-2)x2=-2y6xB(1,y)y=-0.5B到水面的距离为1.5米不能安全通过y=-3代入得26水面宽例题3(1)已知点A(-2,3)与抛物线的焦点的距离是5,则P=。22(0)ypxp(2)抛物线的弦AB垂直x轴,若|AB|=,则焦点到AB的距离为。24yx4342(3)已知直线x-y=2与抛物线交于A、B两点,那么线段AB的中点坐标是。24yx(4,2)四、课堂练习解析:∵y2=4x,∴2p=4,p=2.∴由抛物线定义知:|AF|=x1+1,|BF|=x2+1,∴|AB|=|AF|+|BF|=x1+x2+2=6+2=8.故选A.答案:A2.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若x1+x2=6,则|AB|=()A.8B.10C.6D.4五、归纳总结抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但没有渐近线;抛物线只有一条对称轴,没有对称中心;抛物线的离心率是确定的,等于1;抛物线只有一个顶点,一个焦点,一条准线;抛物线的通径为2P,2p越大,抛物线的张口越大.1、范围:2、对称性:3、顶点:4、离心率:5、通径:6、光学性质:从焦点出发的光线,通过抛物线反射就变成了平行光束.例4斜率为1的直线L经过抛物线y2=4x的焦点,且与抛物线相交于A、B两点,求线段AB的长.xyoF(1,0)Ax+1=0BA‘B‘法2|AB|=x1+x2+P法1利用两点间距离公式221212()()AByyxx法322sinpAB||1212xxk问题:倾斜角为的直线经过抛物线22ypx(0)p的焦点,与抛物线相交于AB、,求线段AB的长.解:设1122(,),(,)AxyBxy,焦点(,0)2pF11(,)xy22(,)xyMN由抛物线定义可知,FAMAFBNB准线:2plx,分别过点A、B作l的垂线,垂足分别为M、N.∴ABFAFB=12xxp∵直线AB的方程为cot2pxy由2cot22pxyypx消去y并整理得222(2cot)0xppxp∴AB=2222cot2sinppp引伸:过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A、B两点,求证:以AB为直径的圆和这抛物线的准线相切.OFBACDEH分析:运用抛物线的定义和平面几何知识来证比较简捷.xyxyEOFBADCH证明:如图.设AB的中点为E,过A、E、B分别向准线l引垂线AD,EH,BC,垂足为D、H、C,则|AF|=|AD|,|BF|=|BC|∴|AB|=|AF|+|BF|=|AD|+|BC|=2|EH|所以EH是以AB为直径的圆E的半径,且EH⊥l,因而圆E和准线l相切.例5过抛物线焦点F的直线交抛物线于A,B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴。22,xypx证明:以抛物线的对称轴为轴,它的顶点为原点,建立直角坐标系。设抛物线的方程为02,pOAyxy则直线的方程为2px准线20.Dpyy联立可得2002(,0),.222pxpyFAFypyp又点直线为220.Bpyy与y=2px联立可得,//DByyDBx由知轴。xyOFABD200(,)2yAyp点220,.yp当时结论显然成立所以,直线DB平行于抛物线的对称轴。抛物线的焦点弦的如下性质:例5.过抛物线焦点F的直线交抛物线于A,B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.xOyFABD22,xypx另证:以抛物线的对称轴为轴,它的顶点为原点,建立直角坐标系。设抛物线的方程为当直线AB存在斜率时,设AB为()2pykx与y2=2px联立,得yAyB=-p22,ApOAyxy直线的方程为2.DApyy2.BApyy即,//DByyDBx由知轴。当直线AB不存在斜率时,结论显然成立.所以,直线DB平行于抛物线的对称轴。22,,yxOAOBABx练习1、过抛物线的顶点作两条互相垂直的弦求证:直线与轴的交点为定点.:,OAlykx解:(1)设xkylOB1:则xykxy22联立222,AAxykkxyxky212联立22,2BBxkyk(1)k22222212ABkkkkkkk.FxOyBA22222:y(),1(2)1kABxkkkkyxk即ABx直线与轴的交点为定点(2,0).1,,(2,0)kAByAB当时∥轴与x轴相交于点,(2,0).AB综上所述直线与x轴的交点为定点22222212ABkkkkkkk.FxOyBA1122(.),(,),AB:AxyBxyykxb另解设xybkxy22联立0)22(222bxkbxk2221kbxxkbyy221同理02121yyxxOBOA由kbkbkb20222即:2ABykxk)0,2(轴交点与x.FxOyBA22,,yxOAOBABx练习1、过抛物线的顶点作两条互相垂直的弦求证:直线与轴的交点为定点.,(2,0)AByAB当∥轴时与x轴相交于点综上所述,直线AB与x轴的交点为定点(2,0).直线与抛物线的位置关系⑴直线与抛物线有三种位置关系:相交、相切、相离.相交:直线与抛物线交于两个不同点,或直线与抛物线的对称轴平行;相切:直线与抛物线有且只有一个公共点,且直线不平行于抛物线的对称轴;相离:直线与抛物线无公共点.⑵直线与抛物线的位置关系的判断.把直线的方程和抛物线的方程联立得一方程组,于是:①方程组有一组解直线与抛物线相交或相切(1个公共点;②方