第1页共19页理化检测数据的统计分析1检验误差及其参数1.1误差类型理化检验需要借助于测量来完成。由于被测量的数值形式通常不能以有限位数表示,又由于认识能力的不足和技术水平的限制,测量值和它的真值并不完全一致,这种矛盾在在在数值上的表现即为误差。任何测量结果都有误差。误差存在于一切测量工作的全过程。布点采样有样品误差,分析测试有测量误差。就实验室测定误差按其性质和产生原因可分为系统误差、随机误差和过失误差。1.1.1系统误差(systemasiaerror)系统误差又称可测误差、恒定误差、定向误差或偏倚(bias),系指测量值的总体均值与真值之间的差别,是由测量过程中某些恒定因素造成的。在一定的测量条件下,系统误差会重复地表现出来。R!!误差的大小和方向在多次重复测量中几乎相同。因此,增加测量次数不能减少系统误差。(1)系统误差产生的原因:系统误差产生的原因有如下几方面。◇方法误差:系由分析方法不够完善所致。因掌握方法的最佳条件不当而引起的误差。如在容量分析中,由于指示剂对反应终点的影响,使得滴定终点与理论等当点不能完全重合;蛋白质的测定除蛋白质氮外,非蛋白质氮也测定了;脂肪测定索氏提出法用乙醚,只能测定游离脂肪,不能测出结合脂肪,同时色素腊质的等也测出算成脂肪含量等。◇仪器误差:由于分析仪器未经校准就使用了所带来的误差。如天平不等臂、砝码不准、光度计波长不准、滴定管、移液管、刻度吸管、容量瓶的示值与真值不一致等。◇试剂误差:由于所用试剂(包括用水)中含有杂质所致。如基准度试剂及去离子水纯度不够等。◇恒定操作误差:由于操作者感觉器官的差异,反应的敏捷程度和固有习惯所致。如沉淀转移、萃取、过滤、加热蒸发所造成的损失。实验人员感觉器官上的缺陷第2页共19页与个人的习惯偏见对仪器标尺读数时始终偏右或偏左颜色分辩的差异等。例如操作者对滴定终点颜色观察的不同;目测比色对黄色深浅难以敏锐的观察;光度法测定时,仪器吸光度读数的差异。◇恒定环境误差:系由测量时环境因素的显著改变所致。如室温的明显变化、溶液中某组分挥发造成溶液浓度的改变等。(2)减少系统误差的方法:◇仪器标准:测量前预先对仪器进行校准,并将校正值应用到测量结果的修正中去。◇空白试验:用空白试验结果修正测量结果,以消除由于试剂不纯等原因所产生的误差。(3)对照分析:◇标准对照:将实际样品与标准物质在同样条件下进行比较测定。当标准物质的保证值与其测量值一致时,可认为该方法的系统误差已基本消除。◇异法对照:采用不同的分析方法。例如与经典分析方法进行比较,以校正方法的误差。(4)回收率:在实际样品中加入已知量的标准物质,在相同条件下进行测量,观察所得结果能否定量回收,并以回收率作为校准因子。系统误差和准确度的关系从系统误差来源可知:方法、仪器、试剂,个人操作是引起系统误差的原因。例如有100.0mL容量瓶,实际体积是99.90mL相差0.1mL,无论谁用这个容量瓶它的体积都是99.90mL。用1/万的分析天平,无论什么人用这架分析天平,都是1/万的误差…….。即经常重复向一个方向发生的误差,因此是定向误差。如上所述,由于系统误差的存在,在检验中无论如何细心、认真,总会和真实结果(值)有一定的差距,可能比真实值多一点或少一点。所以系统误差的大小,决定分析方法的准确度,即分析方法的准确度是有系统误差决定的。系统误差越大,分析方法的准确度越差。系统误差越小,分析方法的准确度越高。第3页共19页1.1.2随机误差(randomerror)随机误差又称为不可测误差,是由测量过程中各种随机因素的共同作用造成的。随机误差遵从统计学的正态分布,它具有以下特点:◇有界性:在一定条件下的有限测量值中,其误差的绝对值不会超过一定界限。◇单峰性:绝对值小的误差出现的次数比绝对值大误差出现的次数多。◇对称性:在测量次数足够多时绝对值相等的正误差与负误差出现的次数大致相等。◇抵偿性:在一定条件下一对同一量进行测量,随机误差的算术平均值随着测量次数的无限增加而趋于零,即误差平均值极限为零。(1)随机误差产生的原因:随机误差是由能够影响测量结果的许多控制或控制的因素的微小波动引起的。如测量过程中环境温度的波动、电源电压的小幅度起伏、仪器的噪音、分析人员判断能力和操作技术的微小差异和前后不一致等。因此,随机误差可以看作是大量随机因素造成的误差的迭加。(2)减少随机误差的办法:除必须严格控制试验条件,按照分析操作规程正确进行各项操作外,可以利用随机误差的抵偿性,用增加测量次数的办法减少随机误差。1.1.3过失误差(mistake)过失误差亦称粗差,这是误差明显地歪曲测量的结果,是由测量过程中犯下了不应该有的错误造成的。如器皿不清洁、加错试剂、错用样品、操作过程中试样大量损失、仪器出现异常而未发现、读数错误、记录错误及计算错误等。过失误差无一定规律可循。过失误差一经发现,必须及时改正。过失误差的消除,关键在于分析人员必须养成专心、认真、细致的良好工作习惯,不断提高理论和操作技术水平。含有过失误差的测量数据经常表现为离群数据,可以用离群数据的统计检验方法将其剔除。对于确知在操作过程中存在错误情况的测量数据,无论结果好坏,都必须舍弃。1.2特性参数反应监测质量的特性参数很多,易混淆的主要参数分述如下。1.2.1准确度(accuracy)第4页共19页准确度是有一个特定的分析程序所获得的分析结果(单次测定值或重复测定的均值)与假定的或公认的真值之间符合程度的度量。一个分析方法或分析测量系统的准确度是反映该方法或该测量存在的系统误差和随机误差两者的综合指标,它决定着这个分析结果的可靠性。准确度的大小用误差(E)表示。误差小,准确度高;误差大,准确度低。误差(E):又分绝对误差和相对误差。绝对误差:uxE1绝(绝对值)式中:1x测定值u真值相对误差:%1001uuxE相在实际工作中,样品中待测组分的真值(u)是不知道的,在理化检验中通常用测回收率的办法,即可用测量标准物质或标准物质做回收率测定的办法来评价分析方法和测量系统的准确度。这是目前实验室中常用而又方便的确定准确度的方法。多次回收试验可发现方法的系统误差。回收率的测定,最好选用不含欲测物质的或含欲物质较低的样品作试样,加入已知欲测物质,配成加标样品。要严格的按操作中规定的的步骤和所用的仪器进行试验,这样才能反映出接近真实的情况。利用回收的方法可以定量的估计干扰物质是否存在以及影响程度。以吸光度法,气相色谱法,原子吸收法最为常见,个别容量分析,有时也采用回收率的测定。加标试样测定值-试样测定值回收量回收率(%)=×100%=×100%加标值加标量另一种表达方式是不正确的:加标试样测定值回收率(%)=×100%加入标准物质量+试样测定值例如:未知水样××物质浓度(含量)为1.00mg/L,加入未知水样中物质的浓度为5.00mg/L,测定加标后水样浓度为5.50mg/L.5.50-1.004.5回收率(%)=×100%=×100%=90(正确的)5.005.00第5页共19页5.5回收率(%)=×100%=91.7(不正确的)5.00+1.00使用回收率评价准确度时应注意:(1)样品中待测物质的浓度加入标准物质的浓度对回收率的影响。通常标准物质的加入量以与待测物质浓度水平相等或接近为宜。若待测物质浓度较高,则加标后的总浓度不宜超过方法线性范围上限的90%;若其浓度小于检测限,可按测定下限量加标。在其他任何情况下,加标量不得大于样品待测物含量的3倍。,以同一样品为本底值,加低、中、高三个添加量求回收率,其平均加收率一般要求在80~110%;回收实验一般指低、中、高三个浓度的回收实验,才有实际意义。因为这样能够较全面的反映出不同浓度下的回收情况。如果只做一个浓度回收实验,是不全面的,一般来说低浓度回收较差(低)而中高浓度回收率较好。(2)加入标准物质与样品中待测物质的形态未必一致,即使形态一致,其与样品中其它组分间的关系也未必相同。因而用回收率评价准确度并非全部可靠,有以食品表现更为明显。例如六六六或DDT的测定的回收实验,加入的纯品六六六或DDT,而在农副产品,鱼、乳、肉、蛋中的六六六和DDT有的溶解在脂肪中,有的是与某些生物体内结合在一起,因此,上述回收率测定方法不应该被认为是完全可靠的,只是由于测定方法简便易行,所以实验室一边都采用。(3)样品中某些干扰物质对待测物质产生的正干扰或负干扰,有时不能为回收率试验所发现。如用银量法测定水中氯化物时,由于受到存在于水中的其他卤化物的影响,其回收率结果也不可靠。离子色谱法测定水中氯化物时,由于受到存在于水中的其他含氯化物(次氯酸钠)的影响,其回收率结果也不可靠。通常认为不同的分析方法具有相同的不准确性的可能很小。因此,对同一样品用不同方法获得的相同的测定结果可以作为真实值的最佳估计。当采用不同分析方法对同一样品进行重复测定,所得结果一致,或统计检验表明其差异不显著时,则可认为这些方法都具有较好的准确度。若所得结果出现显著差异,应以被公认是可靠的方法为准。提高分析结果准确度的方法提高分析结果的准确度就是努力减少系统误差,是分析结果接近真实值。第6页共19页(1)空白实验目的:消除化学试剂、蒸馏水和所用仪器造成的系统误差。方法:空白实验就是由蒸馏水代替样品溶液和被测样品在完全相同条件下进行测定,所得的结果为空白值,从样品的结果扣除空白值,就得到比较可靠的结果。※空白值一般都不应很高,如发现空白值很高,用扣空白值的方法必然很大的误差,遇此情况硬体纯试剂和改进实验器皿来解决。(2)仪器校正容量分析相对误差不应超过0.1-0.2%,应该根据情况对测量仪器和滴定管、移液管、刻度吸管、天平、砝码等精密仪器定期进行校正,并在分析结果计算将校正值参与计算。(3)对照实验对照实验是检验系统有效误差的有效方法,进行对照实验时,常用已知含量的表标准样品与被测样品一起在相同条件下测定,根据标准样品测定结果校正被测样品的含量。标样中被测物质含量被测样品含量=被测样品测定结果×标样中所测结果1.2.2精密度(precision)精密度是指有一特定的分析程序在受控条件下重复分析均一样品所得测定值的一致程度。它反映了分析方法或测量系统存在的随机误差的大小。精密度通常用用极差、平均值和相对平均偏差、标准偏差和相对标准偏差表示。极差(R):也叫全距(renge),是指数据中最大值与最小值之差。minmaxxxR)(max最大值x)(min最小值x偏差(d):精密度的大小通常用偏差表示。当各次重复测定的数据越接近则偏差越小,精密度越高;反之数据越分散,偏差越大,精密度越低。平均偏差(平d):xxdi平(离均值)式中ix:测定值;x:测定均值相对偏差(相d):%100xxxdi相第7页共19页在理化检验中,即使使条件完全相同,同一样品的多次检验结果也不完全相同。为了描述这种测定数据间的分散程度,常使用标准(偏)差或变异系数表示。标准差(S)是指一组测定值中,每一测定值与测量均值间的平均偏离程度。112nxxsnii根据统计学常识可知:标准差越小,说明各测定值愈靠近平均值,即离算程度越小。标准差越大,说明各测定值愈远离平均值,即离算程度越大。按统计学正态分布:68%测定值在x±S范围之内。95%测定值在x±1.96S范围之内。99%测定值在x±2.56S范围之内.所以标准差(S)越小,说明方法的精密度越高,方法稳定性重显性好。但标准差(S)毕竟是一个绝对值,仍没有考虑平均值的大小。如附上变异系数(CV)即标准差(S)对平均值(x)的相对百分数,就更能说明方法的精密度,因此,,目前表示分析方法精密度都用(S)和(CV)两个指标表示变异系数(CV):又叫相对标准偏差。%100xsCV由于标准偏差在数理统计中属于无偏估计统计量,常被采用。在数理统计中常用平行性、重复性、再现性来检验精密度。其分别为:平行性(erplioability)是指在同一条件下,用同一方法对同一样品所进行的双份或多份平行样测定结果之间的符合程度。重复性(e