第1页(共32页)29016最新版中考北师大九年级数学相似三角形的性质一.选择题(共10小题)1.(2016•崇明县一模)如图,在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,那么下列各式中一定正确的是()A.AE•AC=AD•ABB.CE•CA=BD•ABC.AC•AD=AE•ABD.AE•EC=AD•DB2.(2015•济南)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=2,则线段ON的长为()A.B.C.1D.3.(2015•株洲)如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.4.(2015•青海)在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于()第2页(共32页)A.B.C.D.5.(2015•恩施州)如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4B.7C.3D.126.(2015•哈尔滨)如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A.=B.=C.=D.=7.(2015•毕节市)在△ABC中,DE∥BC,AE:EC=2:3,DE=4,则BC等于()A.10B.8C.9D.68.(2015•宁波)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015,到BC的距离记为h2015.若h1=1,则h2015的值为()第3页(共32页)A.B.C.1﹣D.2﹣9.(2015•绵阳)如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.B.C.D.10.(2015•黄冈中学自主招生)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1B.5:3:1C.25:12:5D.51:24:10二.填空题(共13小题)11.(2016•浦东新区一模)如图,在△ABC中,AC=6,BC=9,D是△ABC的边BC上的点,且∠CAD=∠B,那么CD的长是.第4页(共32页)12.(2016•黄浦区一模)如图,在△ABC中,D、E分别是边AC、AB上的点,且AD=2,DC=4,AE=3,EB=1,则DE:BC=.13.(2016•静安区一模)如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.14.(2016•闵行区一模)如图,在△ABC中,∠ACB=90°,点F在边AC的延长线上,且FD⊥AB,垂足为点D,如果AD=6,AB=10,ED=2,那么FD=.15.(2016•徐汇区一模)如图,在▱ABCD中,AB=6,AD=4,∠BAD的平分线AE分别交BD、CD于F、E,那么=.16.(2016•徐汇区一模)点D在△ABC的边AB上,AC=3,AB=4,∠ACD=∠B,那么AD的长是.第5页(共32页)17.(2016•虹口区一模)如图,在▱ABCD中,E是边BC上的点,分别连结AE、BD相交于点O,若AD=5,=,则EC=.18.(2015•泰州)如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为.19.(2015•天津)如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为.20.(2015•金华)如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是.21.(2015•常州)如图,在△ABC中,DE∥BC,AD:DB=1:2,DE=2,则BC的长是.第6页(共32页)22.(2015•柳州)如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,那么EH的长为.23.设M、N分别是△ABC两边AB、AC的中点,P是MN上任意一点,延长BP交AC于点Q,延长CP交AB于R,则=.三.解答题(共6小题)24.(2015•南京)如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.25.(2015•岳阳)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.第7页(共32页)26.(2015•泰安)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.27.(2015•茂名)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒(0<t<),连接MN.(1)若△BMN与△ABC相似,求t的值;(2)连接AN,CM,若AN⊥CM,求t的值.28.(2015•湘潭)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.第8页(共32页)29.(2015•绥化)如图1,在正方形ABCD中,延长BC至M,使BM=DN,连接MN交BD延长线于点E.(1)求证:BD+2DE=BM.(2)如图2,连接BN交AD于点F,连接MF交BD于点G.若AF:FD=1:2,且CM=2,则线段DG=.第9页(共32页)29016最新版中考北师大九年级数学相似三角形的性质参考答案与试题解析一.选择题(共10小题)1.(2016•崇明县一模)如图,在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,那么下列各式中一定正确的是()A.AE•AC=AD•ABB.CE•CA=BD•ABC.AC•AD=AE•ABD.AE•EC=AD•DB【考点】相似三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,而∠A公共,由此可以得到△ABC∽△AED,然后利用相似三角形的性质即可求解.【解答】解:∵在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,而∠A公共,∴△ABC∽△AED,∴AB:AE=AC:AD,∴AB•AD=AC•AE.故选A.【点评】此题主要考查了相似三角形的下着雨判定,解题的关键是证明两个三角形相似即可解决问题.2.(2015•济南)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=2,则线段ON的长为()A.B.C.1D.【考点】相似三角形的判定与性质;角平分线的性质;正方形的性质.菁优网版权所有【专题】计算题.第10页(共32页)【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2OC=AC=+1,所以CH=AC﹣AH=2+,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.【解答】解:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴=,即=,∴ON=1.故选C.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.3.(2015•株洲)如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()第11页(共32页)A.B.C.D.【考点】相似三角形的判定与性质.菁优网版权所有【分析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得=,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【解答】解:∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选C.【点评】本题主要考查的是相似三角形的判定与性质,发现+=1是解决本题的关键.4.(2015•青海)在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.菁优网版权所有第12页(共32页)【分析】根据题意得出△DEF∽△BCF,那么=;由AE:ED=2:1可设ED=k,得到AE=2k,BC=3k;得到=,即可解决问题.【解答】解:如图,∵四边形ABCD为平行四边形,∴ED∥BC,BC=AD,∴△DEF∽△BCF,∴=,设ED=k,则AE=2k,BC=3k;∴==,故选A.【点评】本题主要考查了相似三角形的判定与性质,平行四边形的性质等几何知识点及其应用问题;得出△DEF∽△BCF是解题的关键.5.(2015•恩施州)如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4B.7C.3D.12【考点】相似三角形的判定与性质;平行四边形的性质.菁优网版权所有【分析】由EF∥AB,根据平行线分线段成比例定理,即可求得,则可求得AB的长,又由四边形ABCD是平行四边形,根据平行四边形对边相等,即可求得CD的长.【解答】解:∵DE:EA=3:4,∴DE:DA=3:7∵EF∥AB,∴,∵EF=3,∴,解得:AB=7,∵四边形ABCD是平行四边形,∴CD=AB=7.故选B.【点评】此题考查了平行线分线段成比例定理与平行四边形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.第13页(共32页)6.(2015•哈尔滨)如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A.=B.=C.=D.=【考点】相似三角形的判定与性质;平行四边形的性质.菁优网版权所有【分析】根据相似三角形的判定和性质进行判断即可.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BF,BE∥DC,AD=BC,∴,,,故选C.【点评】此题考查相似三角形的判定和性质,关键是根据相似三角形的判定和性质来分析判断.7.(2015•毕节市)在△ABC中,DE∥BC,AE:EC=2:3,DE=4,则BC等于()A.10B.8C.9D.6【考点】相似三角形的判定与性质.菁优网版权所有【分析】根据相似三角形的对应边成比例,即可求得BC的长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴B