[例1]yzPPllyz已知:32a工字钢,l=2m,P=33kN,=15°,[σ]=170MPa,校核梁的强度。ABllyzPzPyABllyPy+My2lPZ+MZ2lPyyzPPzABllyzPy解:)(87.312mkNlPMZy)(54.82mkNlPMyz+My2lPZ+MZ2lPyyzP危险截面在跨中PzABllyzPy解:)(87.312mkNlPMZy)(54.82mkNlPMyz查表得:)(6923cmyW)(8.703cmzWzzyyWMWMmax3636108.701054.8106921087.316.1201.46)(7.166MPa安全。][yzPPABllyz+Pl/2M另:若φ=0°,求梁内最大正应力。)(332maxmkNlPM查表得:)(6923cmyWyWMmaxmax361069210337.47)(MPa解:yP应力下降约3/4已知:P1=1.7kN,P2=1.6kN,l=1m,[σ]=160MPa,试指出危险点的位置并设计圆截面杆的直径。)(6.12mkNlPMy解:危险截面在固定端[例2]yzllP2zyP1Mz+My-)(4.321mkNlPMZllP2zyP1MyyMzzyz不能使用!公式zzyyWMWMmax3][32MdWMmax)(62mm361601076.332llP2zyP122zyMMMMyyMzzyzMzMyM224.36.1323dM][∴)(76.3mkNDC危险点在C、D两点yMzyDCFNNNMmaxAFWMzzNMzMmax强度条件:max][NAFWMzz[例3]lBCAPα简易吊车,AB梁为18号工字钢,W=185cm3,A=30.6cm2,梁长l=2.6m,=30°,[]=120MPa,P=25kN,校核梁的强度。解:取小车在中点的工况l/2BAPRBl/2RAxRAy)kN(25BRl/2BAPRBl/2RAxRAy由理论力学得:)kN(65.21AxR)kN(5.122PRAyRBxRByAB梁受压弯组合,跨中为危险截面:)kN(65.21NAxRF)mkN(3.162lRMAy危险点在跨中上边缘,是压应力:l/2BAPl/2RAyRByBARAxRBx+16.3Ml/2BAPRBl/2RAxRAyRBxRByAB梁受压弯组合,跨中为危险截面:)kN(65.21NAxRF)mkN(3.162lRMAy危险点在跨中上边缘,是压应力:362310185103.16106.301065.211.8809.7)MPa(2.95][∴安全!+16.3MWMAFcNmax)kN(50BRl/2BAPRBl/2RA)kN(3.43ARAB梁受轴向压缩:)kN(3.43NARFAFN23106.30103.43)MPa(1.14当小车在B点时:lBCAP[例4]lBCAP简易吊车,梁长l=2.6m,α=30°,[]=120MPa,P=50kN,试选择工字钢型号。解:取小车在中点的工况l/2BAPRBl/2RAxRAy)kN(50BRl/2BAPRBl/2RAxRAy)kN(3.43AxR)kN(252PRAyRBxRByAB梁受压弯组合,跨中为危险截面:)kN(3.43NAxRF)mkN(5.322lRMAy由弯曲强度进行试算:120105.326)MPa(5.115][WMmax][][MW)mm(1027033∴选22a工字钢,W=309cm3WMAFcNmax362310309105.3210128.42103.43∴可以选22a工字钢![例4]已知:冲压机,铸铁机身,[t]=30MPa,[c]=160MPa,Iy=5310cm4,A=150cm2,z0=7.5cm,z1=12.5cm,l=35cm,P=40kN,校核立柱强度。z1z0yzlPPABlPABFNM解:)(0zlPM23101501040)MPa(67.2ytIzM046105310751017)MPa(24ycIzM1461053101251017)MPa(40NFNctM)kN(40)mkN(17z1z0yzPFNAFNNNctNttmaxNccmax67.224)MPa(7.2667.240)MPa(3.37][t][c∴该立柱安全!maxtmaxcPPmm5102010100201020Cz235100101210010CyI]252010122010[23图示钢板,厚度t=10mm,受力P=100kN,试求最大正应力;若将缺口移至板宽的中央,则最大正应力为多少?解:内力分析如图坐标如图,形心位置mN500CzPMPPMFN2010020yzyCzC[例5]45mm1027.7yctIzMAFmaxNmaxMPa8.1628.37125应力分析如图5331027.7551050080010100孔移至板中间时)MPa(125800101003NmaxAFPMNNMAFNmax211Nmax1zWMAF2333.02.0605.0103503.02.010350解:图(1)图示不等截面与等截面杆,受力P=350kN,试分别求出两柱内的最大正应力(绝对值)。图(1)图(2)PMFNd50P200MPa7.11MPa75.82.02.0350000[例6]图(2)P200300§8-4偏心拉(压)截面核心PzyxzyxzPMzMyzyMzx一、偏心拉(压)yz(yP‚zP)PyzPMPzyPMAPNzzzMIyMyyMIzMyMyzyMzxMyyMZyPyyyzzIzMIyMAPzyxyyzztWMWMAPmaxyyzzcWMWMAPmax强度条件:max][yyzzWMWMAP危险点中性轴二、中性轴方程2020yPzPAizPzAiyPyAPyz中性轴yz),(PPyz0)1(2020yPzPizziyyAP中性轴在y和z轴上的截距ay,az:,012zyPiay012yzPiaz012020yPzPizziyy,00z令,00y令,2Pzyyia,2Pyzzia∴000yyzzxIzMIyMAP令:yzayaz中性轴),(PPyzP截面核心三、截面核心:,2Pzyyia,2Pyzzia当yP和zP逐步减小时,中性轴将移出横截面,截面上只存在拉应力。当外力作用点位于截面形心附近的一个区域内时,就可以保证中性轴不穿过横截面,横截面上无压应力(或拉应力),此区域称为截面核心。PPPPσσσσ[例]:矩形截面立柱,欲使柱内不出现拉应力,求P力的作用区域。PeyzhbeePM=Pe可以证明,当P力作用在由此四点围成的菱形内时,横截面上无拉应力。该菱形区域称为截面核心由对称性可知,在z轴上的作用区域为h/3eM=PeAPWMytmax≤0bhPbhPe62≤06he同理可知,在y轴上的作用区域为b/3zyhbh/3§8–5弯曲与扭转的组合mPlTm+MPl-危险截面在固定端MTMσTτ危险点在固定端的上、下两点WM,tWTMTMσTτmPlABAB2234r2243r223)(4)(trWTWM224)(3)(trWTWMmPlABWW2t223)2(4)(WTWMr即:WTMr223WTMr22475.0AB∵∴已知:P=4.2kN,m=1.5kN·m,l=0.5m,d=100mm,[σ]=80MPa,按第三强度理论校核杆的强度。)(5.1mkNmT解:危险截面在固定端yz)(2.42mkNlPMZ[例7]Mz+T-My-llPzyPmd)(1.2mkNlPMy22zyMMM222.41.2)(7.4mkN将弯矩合成:llPzyPT-mdWTMr2233210014.3105.17.43622MPa3.50安全!Mz+My-22zyMMM)(7.4mkN图示空心圆轴,内径d=24mm,外径D=30mm,轮子直径D1=400mm,P1=1.2kN,P1=2P2,[]=120MPa,试用第三强度理论校核此轴的强度。[例8]20ºPzyxP1150200100ABCDP2D1D1外力分析:解:20ºPzyxP1150200100ABCDP2D1D1221211DPDPMx)mN(120FMxzxyPyPzMx21PPF)kN(8.1PyPz20ºPzyxP1150200100ABCDP2D1D120tanyzPPxM由21DPyFMxzxyPyPzMxPyPz)(6.0kNyP)kN(218.0得:20ºPzyxP1150200100ABCDP2D1D121PPFFMxzxyPyPzMx)kN(8.1)(6.0kNyP)(218.0kNzP)mN(120xM内力分析:120(N·m)T150200100ABCDFMxzxyPyPzMx60128.5Mz(N·m)9.321.8My(N·m)弯扭组合变形危险面内力为:m)N(8.1285.1283.922BMm)N(8.63608.2122CM∴B截面是危险面。WTMBr223)mm3(1564])(1[3243DdDW1564101208.128322)(5.112MPa∴安全