12009年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•山东)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为()A.0B.1C.2D.4【考点】并集及其运算.菁优网版权所有【专题】集合.【分析】根据题意,由并集的计算方法,结合a与a2的关系,易得,即可得答案.【解答】解:∵A={0,2,a},B={1,a2},A∪B={0,1,2,4,16}∴∴a=4,故选D.【点评】本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题.2.(5分)(2009•山东)i是虚数单位,=()A.1+2iB.1﹣2iC.2+iD.2﹣i【考点】复数代数形式的乘除运算.菁优网版权所有【专题】数系的扩充和复数.【分析】将分式分子、分母同乘分母的共轭复数,分母实数化,分子化简即可.【解答】解:=故选C.【点评】分母实数化,是计算复数除法的原则,需要正确计算.是基础题目.3.(5分)(2009•山东)将函数y=sin2x的图象向左平移个单位,再向上平移1个单位,所得图象的函数解析式是()A.y=2cos2xB.y=2sin2xC.D.y=cos2x【考点】函数y=Asin(ωx+φ)的图象变换.菁优网版权所有【专题】三角函数的图像与性质.【分析】按照向左平移,再向上平移,推出函数的解析式,即可.【解答】解:将函数y=sin2x的图象向左平移个单位,2得到函数=cos2x的图象,再向上平移1个单位,所得图象的函数解析式为y=1+cos2x=2cos2x,故选A.【点评】本题考查函数y=Asin(ωx+φ)的图象变换,考查图象变化,是基础题.4.(5分)(2009•山东)一个空间几何体的三视图如图所示,则该几何体的体积为()A.2π+B.C.D.4【考点】由三视图求面积、体积.菁优网版权所有【专题】立体几何.【分析】由三视图可以看出,此几何体是一个上部为圆锥、下部为圆柱的几何体,故可以分部分求出圆锥与圆柱的体积再相加求出此简单组合体的体积.【解答】解:所求几何体为一个圆柱体和圆锥体构成.其中圆锥的高为.其体积为=圆柱的体积为π•12•2=2π故此简单组合体的体积V=+2π故选C.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是简单组合体的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.5.(5分)(2009•山东)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件;空间中直线与平面之间的位置关系.菁优网版权所有【专题】空间位置关系与距离;简易逻辑.【分析】判充要条件就是看谁能推出谁.由m⊥β,m为平面α内的一条直线,可得α⊥β;反之,α⊥β时,若m平行于α和β的交线,则m∥β,所以不一定能得到m⊥β.【解答】解:由平面与平面垂直的判定定理知如果m为平面α内的一条直线,且m⊥β,则α⊥β,反之,α⊥β时,若m平行于α和β的交线,则m∥β,所以不一定能得到m⊥β,3所以“α⊥β”是“m⊥β”的必要不充分条件.故选B.【点评】本题考查线面垂直、面面垂直问题以及充要条件问题,属基本题.6.(5分)(2009•山东)函数y=的图象大致为()A.B.C.D.【考点】函数的图象与图象变化.菁优网版权所有【专题】函数的性质及应用.【分析】欲判断图象大致图象,可从函数的定义域{x|x≠0}方面考虑,还可从函数的单调性(在函数当x>0时函数为减函数)方面进行考虑即可.【解答】解析:函数有意义,需使ex﹣e﹣x≠0,其定义域为{x|x≠0},排除C,D,又因为,所以当x>0时函数为减函数,故选A答案:A.【点评】本题考查了函数的图象以及函数的定义域、值域、单调性等性质.本题的难点在于给出的函数比较复杂,需要对其先变形,再在定义域内对其进行考查其余的性质.7.(5分)(2009•山东)设P是△ABC所在平面内的一点,,则()A.B.C.D.【考点】向量的加法及其几何意义;向量的三角形法则.菁优网版权所有【专题】平面向量及应用.【分析】根据所给的关于向量的等式,把等式右边二倍的向量拆开,一个移项一个和左边移来的向量进行向量的加减运算,变形整理,得到与选项中一致的形式,得到结果.【解答】解:∵,4∴,∴∴∴故选B.【点评】本题考查了向量的加法运算和平行四边形法则,可以借助图形解答.向量是数形结合的典型例子,向量的加减运算是用向量解决问题的基础,要学好向量的加减运算.8.(5分)(2009•山东)某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()A.90B.75C.60D.45【考点】频率分布直方图;收集数据的方法.菁优网版权所有【专题】概率与统计.【分析】根据小长方形的面积=组距×求出频率,再根据求出频数,建立等式关系,解之即可.【解答】解:净重大于或等于98克并且小于104克的产品的个数设为N2,产品净重小于100克的个数设为N1=36,样本容量为N,则,故选A.【点评】用样本估计总体,是研究统计问题的一个基本思想方法.对于总体分布,总是用样本的频率分布对它进行估计,频率分布直方图:小长方形的面积=组距×,各个矩形面积之和等于1,,即,属于基础题.59.(5分)(2009•山东)设双曲线的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为()A.B.5C.D.【考点】双曲线的简单性质.菁优网版权所有【专题】圆锥曲线的定义、性质与方程.【分析】由双曲线方程求得双曲线的一条渐近线方程,与抛物线方程联立消去y,进而根据判别式等于0求得,进而根据c=求得即离心率.【解答】解:双曲线的一条渐近线为,由方程组,消去y,有唯一解,所以△=,所以,,故选D【点评】本题主要考查了双曲线的简单性质.离心率问题是圆锥曲线中常考的题目,解决本题的关键是找到a和b或a和c或b和c的关系.10.(5分)(2009•山东)定义在R上的函数f(x)满足,则f(2009)的值为()A.﹣1B.0C.1D.2【考点】分段函数的解析式求法及其图象的作法;函数的值;对数的运算性质.菁优网版权所有【专题】函数的性质及应用.【分析】本题考查的知识点是分段函数的性质及对数的运算性质,要求f(2009)的值,则函数的函数值必然呈周期性变化,由函数的解析式,我们列出函数的前若干项的值,然后归纳出函数的周期,即可求出f(2009)的值.【解答】解:由已知得f(﹣1)=log22=1,f(0)=0,6f(1)=f(0)﹣f(﹣1)=﹣1,f(2)=f(1)﹣f(0)=﹣1,f(3)=f(2)﹣f(1)=﹣1﹣(﹣1)=0,f(4)=f(3)﹣f(2)=0﹣(﹣1)=1,f(5)=f(4)﹣f(3)=1,f(6)=f(5)﹣f(4)=0,所以函数f(x)的值以6为周期重复性出现.,所以f(2009)=f(5)=1,故选C.故选C.【点评】分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上x、y取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.11.(5分)(2009•山东)在区间[﹣1,1]上随机取一个数x,的值介于0到之间的概率为()A.B.C.D.【考点】几何概型.菁优网版权所有【专题】概率与统计.【分析】本题考查的知识点是几何概型的意义,关键是要找出的值介于0到之间对应线段的长度,交将其代入几何概型计算公式进行求解.【解答】解:在区间[﹣1,1]上随机取一个数x,即x∈[﹣1,1]时,要使的值介于0到之间,需使或∴或,区间长度为,由几何概型知的值介于0到之间的概率为.故选A.【点评】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.712.(5分)(2009•山东)设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,则的最小值为()A.B.C.D.4【考点】基本不等式;二元一次不等式(组)与平面区域.菁优网版权所有【专题】不等式的解法及应用.【分析】已知2a+3b=6,求的最小值,可以作出不等式的平面区域,先用乘积进而用基本不等式解答.【解答】解:不等式表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x﹣y+2=0与直线3x﹣y﹣6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,即4a+6b=12,即2a+3b=6,而=,故选A.【点评】本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2009•山东)不等式|x+3|﹣|x﹣2|≥3的解集为{x|x≥1}.【考点】绝对值不等式.菁优网版权所有【专题】不等式的解法及应用.【分析】首先分析不等式|x+3|﹣|x﹣2|≥3,含有两个绝对值号,故不能直接去绝对值需要分类讨论,当x<﹣3时,当﹣3≤x≤2时,当x>2时,三种的情况综合起来即可得到答案.【解答】解:当x<﹣3时,因为原不等式|x+3|﹣|x﹣2|≥3去绝对值号得:﹣(x+3)+(x﹣2)≥3可推出﹣5≥3,这显然不可能,当﹣3≤x≤2时,因为原不等式|x+3|﹣|x﹣2|≥3去绝对值号得:(x+3)+(x﹣2)≥3可推出,x≥1,故当1≤x≤2不等式成立.当x>2时,因为原不等式|x+3|﹣|x﹣2|≥3去绝对值号得:(x+3)﹣(x﹣2)≥3可推出5≥3,这显然恒成立.8故综上所述,不等式的解集为x|x≥1,故答案为{x|x≥1}.【点评】此题主要考查绝对值不等式的解法,对于含有两个绝对值号的绝对值不等式,需要分类讨论才能求得答案.14.(4分)(2009•山东)若函数f(x)=ax﹣x﹣a(a>0,且a≠1)有两个零点,则实数a的取值范围是(1,+∞).【考点】函数的零点.菁优网版权所有【专题】函数的性质及应用.【分析】根据题设条件,分别作出令g(x)=ax(a>0,且a≠1),h(x)=x+a,分0<a<1,a>1两种情况的图象,结合图象的交点坐标进行求解.【解答】解:令g(x)=ax(a>0,且a≠1),h(x)=x+a,分0<a<1,a>1两种情况.在同一坐标系中画出两个函数的图象,如图,若函数f(x)=ax﹣x﹣a有两个不同的零点,则函数g(x),h(x)的图象有两个不同的交点.根据画出的图象只有当a>1时符合题目要求.故答案为:(1,+∞)【点评】作出图象,数形结合,事半功倍.15.(4分)(2009•山东)执行程序框图,输出的T=30.【考点】程序框图.菁优网版权所有【专题】算法和程序框图.9【分析】本题首先分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量T的值,模拟程序的运行,运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:按照程序框图依次执行为S=5,n=2,T=2;S=10,n=4,T=2+4=6;S=1