中国科学技术大学近代力学系主讲:黄生洪•小结二阶张量的分解1)加法分解1)乘法分解第三章:张量函数及其导数•标量•矢量•张量物理量物理量之间的相互关系物质世界•标量函数•矢量函数•张量函数(以张量为自变量,因变量)标量矢量张量分量模:分量运算矢(张)量点积矢(张)量数乘矢(张)量点积张量双点积张量点积及加法运算g1g2x1x2g1’g2’212211cossin)sin(cos''gggggg22112211212122112211cossinsincoscossinsincos''''''''''gggggggggguuuuuuuuuuu''21'uuRf'RfRf各向同性标量函数若222122122122212''''''21cossinsincos212121uuuuuuuufuu容易得到:u1’u2’uugQugQuguguuguguu~~~~~21212121fffuufTTuFuFuGFuQQFuFuFuF,~,~~,fffT例:对一个自变量的情况:例如:例如:不是各向同性标量函数则332211323231022222101212110ggggggHnnnnnnaaaaaaaaaaaa根据各向同性函数的重要特征:而类似证明进一步GTTTTGTTTTTTGTTTTTTTTTTTTTTTTTTTTTTTTT3132122113223221132231322134若存在k0,k1,k2充分性是显而易见的,下面看必要性坐标系中显然且各向同性函数根据前面3.4.15所证定理根据定理3,只要证明33332332232222113121133332232113133232222112133322211132!3!2!11!3!2!11!3!2!11!3!2!1!3!2!1eeeeeeeeeeeeeeeeeeeeeeeeGNNNGHNe根据定理40221101kckcakεεGσε211cc引入有限微分概念另iiiiuugvFgvFuvF;;;'''进一步定义微分:例:例也可:dtddtddtddddddddvvvvvvvvvvvvvvvvvv'''212121TVCTUCTVTUTVCTUCTVTUTVTUCTUTVCTVCTUTVTUCTUTVCTVCTUTVTUTVCTUTVCTUCTVCTUTVTUCTVCTUTHCTHCTH::;;1111111;''''0000000'limlimlimlimlimlimlimhhhhhhhhhhhhhhhhhhhhhhhhhhhTVTTUTTVTUTHddd::''ugvvgvuviikkkkvfvfufuf;;''分量满足坐标转换关系:llliimilmllimlmllimlmllillliilvvfvvvfvvvvfvvvvfvvvvfvvvf''''''''''''''iivg