From Here to Criticality Renormalization Group Flo

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

arXiv:hep-th/9112031v113Dec1991HUTP-91/A061FromHeretoCriticality:RenormalizationGroupFlowBetweenTwoConformalFieldTheoriesW.A.Leaf-Herrmann†JeffersonPhysicalLaboratoryHarvardUniversityCambridge,MA02138Usingnonperturbativetechniques,westudytherenormalizationgrouptrajectorybetweentwoconformalfieldtheories.Specifically,weinvestigateaperturbationoftheA3superconformalminimalmodelsuchthatintheinfraredlimitthetheoryflowstotheA2model.Thecorrelationfunctionsinthetopologicalsectorofthetheoryarecomputednumericallyalongthetrajectory,andtheseresultsarecomparedtotheexpectedasymptoticbehavior.Excellentagreementisfound,andthecharacteristicfeaturesoftheinfraredtheory,includingthecentralchargeandthenormalizedoperatorproductexpansioncoefficientsareobtained.WealsoreviewanddiscusssomeaspectsofthegeometricaldescriptionofN=2supersymmetricquantumfieldtheoriesrecentlyuncoveredbyS.CecottiandC.Vafa.12/91†(leaf@huhepl.hepnet,@huhepl.bitnet,or@huhepl.harvard.edu)1.IntroductionThesetofconformalfieldtheoriesaretheinfraredorultravioletfixedpoints,orcriticalpoints,ofrenormalizationgroupflowtrajectoriesinthespaceoftwo-dimensionalquantumfieldtheories.Atthesefixedpoints,conformalinvarianceprovidesasetofconstraints,realizedbytheinfinite-dimensionalVirasoroalgebra,whichoftenallowfortheexactsolutionofthetheory,inprincipleviatheBPZbootstrap[1],orinpracticeviaexplicitrepresentationsoftheVirasoroalgebra[2].However,thesemethodsgenericallyallowustosolvethetheoryonlyatthecriticalpoint.Tobetterunderstandthestructureofthespaceoftwo-dimensionalfieldtheories,andthespecialroleplayedbytheconformalfieldtheories,wewouldliketobeabletocomputethecorrelationfunctionsbothonandoffofthecriticalpoint.Typically,thebestthatcanbedoneistouseconformalperturbationtheoryintheneighborhoodofafixedpoint,asdemonstratedbyZamolodchikov[3]andothers[4–8].Forexample,onewouldliketobeabletocalculatethescalingbehaviorofthequantumfieldsinaconformaltheoryperturbedbysomerelevantfield,undertheactionofrenormalizationgroupflow.Theinfraredlimitofthistheoryshouldcorrespondtosome(possiblytrivial)conformalfieldtheory.Whilethisquestioncanbeaddressedperturbativelyinsomecases,forinstancetheminimalmodelsnearc=1[3],wegenerallyrequiresomenonperturbativetechniquestoanswertheabovequestion.Inthecaseoftwo-dimensionalfieldtheorieswithN=2supersymmetrysomeoftherequisitetechniqueshaverecentlybeendeveloped[9–13],whichallowforthenonperturbativecalculationofaclassofcorrelationfunctionsbothonandoffthecriticalpoint.ThisclassofcorrelationfunctionsisknownasthetopologicalsectorofN=2fieldtheories,andiscloselyrelatedtothecorrelationfunctionsofphysicalobservablesintopologicalquantumfieldtheories[14].Thetopologicalsectoriscomposedoftheexpectationvaluesofchiralfieldsevaluatedbetweenthesetofsupersymmetricgroundstates.Theequivalencebetweentwo-dimensionalσ-modelsonCalabi-YauspacesandcertainN=2superconformalmodels,firstobservedbyGepner[15],iswell-known,andN=2Landau-GinsburgeffectiveLagrangiansprovideexplicitrealizationsofthiscorrespondence[16–19].ThisequivalencehasledtotheapplicationofgeometricalmethodsinthecharacterizationofN=2superconformalfieldtheories[10,20,21].Usingthequasi-topologicalnatureofN=2supersymmetry,S.CecottiandC.Vafahaverecentlyuncovered1thegeneralizationofthesegeometricalaspectstoarbitraryN=2quantumfieldtheories[12,13].Inthispaperweshallapplytheirresultstothenonperturbativecalculationofthetopologicalsectorofatheorywhichinterpolatesbetweentwoconformalfieldtheoriesalongtherenormalizationgrouptrajectoryconnectingthem.InSection2wedefineanddiscussthepropertiesofthetopologicalsectorofN=2supersymmetricquantumfieldtheories,andtherelationbetweenthissectorandtopologicalquantumfieldtheoriesbasedontwistedN=2models.ThebasicgeometricalframeworkneededtosolveforthetopologicalsectorcorrelationfunctionsisreviewedinSection3.Section4describeshow,byusingtheN=2non-renormalizationtheorem,thesecorrelationfunctionsmaybecalculatednonperturbativelyalongarenormalizationgrouptrajectory.Wealsodiscusstwoquantitiesintroducedin[13]whichservetocharacterizethetheorybothattheconformalpoint,andoffofcriticality,knownastheRamondchargematrixandthealgebraicQ-matrix.Bothareeasilycomputedinthetopologicalsector.Asaconcreteapplicationofthisframework,weanalyzetherenormalizationgroupflowbetweentwoconformalfieldtheories,theA3N=2minimalmodelperturbedinsuchawaythatthetheoryflowstotheA2modelintheinfraredlimit.ThecomputationisdiscussedinSection5,andwecomparetheresultsofthenonperturbativenumericalcalculationofthecorrelationfunctionsoftheinterpolatingtheorywiththeexpectedasymptoticbehaviorinSection6.OurconclusionsarepresentedinSection7.2.TopologicalSectorofN=2QuantumFieldTheoriesWeconsidertwo-dimensionalquantumfieldtheorieswithanN=2supersymmetry.Weassumethetopologyofthetwo-dimensionalspacetobeacylinder,orequivalently,aspherewithtwopunctures.ThesuperchargesQ+,Q−,andtheirHermitianconjugates¯Q−,¯Q+,obeythealgebra:nQ+,Q−o=−∂,¯Q+,¯Q− =−¯∂,(2.1)withallother(anti-)commutationrelationsvanishing.Weimposeperiodicboundaryconditionsonthefermionicoperators,sothattheWittenindex,Tr(−1)F,whereFistheoperatorwhichcoun

1 / 33
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功