第1页(共34页)2016年江苏省南京市江宁区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.(2分)下面的数中,与﹣2的和为0的是()A.2B.﹣2C.D.2.(2分)下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.检查一枚用于发射卫星的运载火箭的各零部件D.考察人们保护海洋的意识3.(2分)从下列不等式中选择一个与x+1≥2组成不等式组,如果要使该不等式组的解集为x≥1,那么可以选择的不等式可以是()A.x>﹣1B.x>2C.x<﹣1D.x<24.(2分)如图是小刘做的一个风筝支架示意图,已知BC∥PQ,AB:AP=2:5,AQ=20cm,则CQ的长是()A.8cmB.12cmC.30cmD.50cm5.(2分)如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()第2页(共34页)A.90°B.180°C.210°D.270°6.(2分)如图,已知点A,B的坐标分别为(﹣4,0)和(2,0),在直线l:y=﹣x+2上取一点C,若△ABC是直角三角形,则满足条件的点C有()A.1个B.2个C.3个D.4个二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)计算:(3a3)2=.8.(2分)温家宝总理强调,“十二五”期间,将新建保障性住房36000000套,用于解决中低收入和新参加工作的大学生住房的需求.把36000000用科学记数法表示应是.9.(2分)分解因式:ab2﹣a=.10.(2分)已知a,b是一元二次方程x2﹣x﹣2=0的两根,则a+b=.11.(2分)计算:﹣=.12.(2分)已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为.13.(2分)如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是cm3.14.(2分)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两第3页(共34页)点,则菱形ABCD的面积为.15.(2分)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为.16.(2分)如图,在△ABC中,CA=CB,∠C=90°,点D是BC的中点,将△ABC沿着直线EF折叠,使点A与点D重合,折痕交AB于点E,交AC于点F,那么sin∠BED的值为.三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算:()0++|﹣3|.18.(6分)÷(x﹣),再从1、0、中选一个你所喜欢的数代入求值.19.(8分)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:第4页(共34页)(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值是;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.20.(8分)已知:如图,矩形ABCD的一条边AB=10,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,折痕为AO.(1)求证:△OCP∽△PDA;(2)若△OCP与△PDA的面积比为1:4,求边AD的长.21.(8分)列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面积.22.(8分)某市举办中学生足球赛,初中男子组共有市直学校的A、B两队和县区学校的e、f、g、h四队报名参赛,六支球队分成甲、乙两组,甲组由A、e、f三队组成,乙组由B、g、h三队组成,现要从甲、乙两组中各随机抽取一支球队进行首场比赛.(1)在甲组中,首场比赛抽到e队的概率是;(2)请你用画树状图或列表的方法,求首场比赛出场的两个队都是县区学校队的概率.23.(10分)甲、乙两城市之间开通了动车组高速列车.已知每隔2h有一列速第5页(共34页)度相同的动车组列车从甲城开往乙城.如图,OA是第一列动车组列车离开甲城的路程s(km)与运行时间t(h)的函数图象,BC是一列从乙城开往甲城的普通快车距甲城的路程s(km)与运行时间t(h)的函数图象.请根据图中的信息,解答下列问题:(1)从图象看,普通快车发车时间比第一列动车组列车发车时间1h(填”早”或”晚”),点B的纵坐标600的实际意义是;(2)请直接在图中画出第二列动车组列车离开甲城的路程s(km)与时间t(h)的函数图象;(3)若普通快车的速度为100km/h,①求第二列动车组列车出发多长时间后与普通快车相遇?②请直接写出这列普通快车在行驶途中与迎面而来的相邻两列动车组列车相遇的时间间隔.24.(8分)如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为1:(即AB:BC=1:),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)25.(8分)已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(Ⅰ)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(Ⅱ)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大第6页(共34页)小.26.(8分)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以这两个交点和该抛物线的顶点、对称轴上一点为顶点的菱形称为这条抛物线的“抛物菱形”.(1)若抛物线y=ax2+bx+c(a≠0)与x轴的两个交点为(﹣1,0)、(3,0),且这条抛物线的“抛物菱形”是正方形,求这条抛物线的函数解析式;(2)如图,四边形OABC是抛物线y=﹣x2+bx(b>0)的“抛物菱形”,且∠OAB=60°①求“抛物菱形OABC”的面积.②将直角三角板中含有“60°角”的顶点与坐标原点O重合,两边所在直线与“抛物菱形OABC”的边AB、BC交于E、F,△OEF的面积是否存在最小值,若存在,求出此时△OEF的面积;若不存在,说明理由.27.(10分)如图,将两块直角三角板摆放在平面直角坐标系中,有∠COD=∠ABO=Rt∠,∠OCD=45°,∠AOB=60°,且AO=CD=8.现将Rt△AOB绕点O逆时针旋转,旋转角为β(0°≤β≤180°).在旋转过程中,直线CD分别与直线AB,OA交于点F,G.(1)当旋转角β=45°时,求点B的坐标;(2)在旋转过程中,当∠BOD=60°时,求直线AB的解析式;(3)在旋转过程中,△AFG能否为等腰三角形?若能,请求出所有满足条件的第7页(共34页)β值;若不能,请说明理由.第8页(共34页)2016年江苏省南京市江宁区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.(2分)下面的数中,与﹣2的和为0的是()A.2B.﹣2C.D.【分析】设这个数为x,根据题意可得方程x+(﹣2)=0,再解方程即可.【解答】解:设这个数为x,由题意得:x+(﹣2)=0,x﹣2=0,x=2,故选:A.【点评】此题主要考查了有理数的加法,解答本题的关键是理解题意,根据题意列出方程.2.(2分)下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.检查一枚用于发射卫星的运载火箭的各零部件D.考察人们保护海洋的意识【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、了解一批圆珠笔的寿命适宜采用抽样调查方式,A错误;B、了解全国九年级学生身高的现状适宜采用抽样调查方式,B错误;C、检查一枚用于发射卫星的运载火箭的各零部件适宜采用普查方式,B正确;D、考察人们保护海洋的意识适宜采用抽样调查方式,D错误;故选:C.第9页(共34页)【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(2分)从下列不等式中选择一个与x+1≥2组成不等式组,如果要使该不等式组的解集为x≥1,那么可以选择的不等式可以是()A.x>﹣1B.x>2C.x<﹣1D.x<2【分析】首先计算出不等式x+1≥2的解集,再根据不等式的解集确定方法:大大取大可确定另一个不等式的解集,进而选出答案.【解答】解:x+1≥2,解得:x≥1,根据大大取大可得另一个不等式的解集一定是x不大于1.故选:A.【点评】此题主要考查了不等式的解集,关键是正确理解不等式组解集的确定方法:大大取大,小小取小,大小小大中间找,大大小小找不着.4.(2分)如图是小刘做的一个风筝支架示意图,已知BC∥PQ,AB:AP=2:5,AQ=20cm,则CQ的长是()A.8cmB.12cmC.30cmD.50cm【分析】利用相似三角形的判定与性质得出==,求出AC的长,进而求出CQ的长.【解答】解:∵BC∥PQ,∴△ABC∽△APQ,第10页(共34页)∴=,∵AB:AP=2:5,AQ=20cm,∴=,解得:AC=8cm,∴CQ=AQ﹣AC=20﹣8=12(cm),故选:B.【点评】此题主要考查了相似三角形的应用,得出△ABC∽△APQ是解题关键.5.(2分)如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210°D.270°【分析】根据两直线平行,同旁内角互补求出∠B+∠C=180°,从而得到以点B、点C为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.【解答】解:∵AB∥CD,∴∠B+∠C=180°,∴∠4+∠5=180°,根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°﹣180°=180°.故选:B.第11页(共34页)【点评】本题考查了平行线的性质,多边形的外角和定理,是基础题,理清求解思路是解题的关键.6.(2分)如图,已知点A,B的坐标分别为(﹣4,0)和(2,0),在直线l:y=﹣x+2上取一点C,若△ABC是直角三角形,则满足条件的点C有()A.1个B.2个C.3个D.4个【分析】(方法一)分∠CAB=90°、∠CBA=90°以及∠ACB=90°三种情况考虑,画出图形,利用数形结合即可解决问题.(方法二)设点C的坐标为(m,﹣m+2),分∠CAB=90°、∠CBA=90°以及∠ACB=90°三种情况考虑:当∠CAB=90°时,由点A的横坐标利用一次函数图象上点的坐标特征即可得出点C的坐标;当∠CBA=90°时,由点B的横坐标利用一次函数图象上点的坐标特征即可得出点C的坐标;当∠ACB=90°时,利用勾股定理可得出关于m的一元二次方程,解之即可得出m的值,将其代入点C的坐标中即可得出点C的坐标.综上即可得出结论.【解答】解:(方法一)当∠CAB=90°时,此时点C为图中C1;当∠CBA=90°时,此时点C为图中C2;当∠ACB=90°时,以线段AB为直径画圆,圆与直线l交于点C3、C4两点,此时∠AC3B=∠AC4B=90°.综上所述:满足条件的点C有4个.(方法二)设点C的