角平分线(1)还记得角平分线上的点有什么性质吗?你是怎样得到的?用心想一想角平分线上的点到角两边的距离相等.课件使用101教育PPT制作(ppt.101.com)已知:如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D、E.求证:PD=PE.证明:∵∠1=∠2,OP=OP,∠PDO=∠PEO=90°,∴△PDO≌△PEO(AAS).∴PD=PE(全等三角形的对应边相等)21EDCPOBA角平分线的性质定理角平分线上的点到这个角的两边的距离相等.21EDCPOBA如果有一个点到角两边的距离相等,那么这个点必在这个角的平分线上.你能写出这个定理的逆命题吗?用心想一想,马到功成这个命题是假命题.角平分线是角内部的一条射线,而角的外部也存在到角两边距离相等的点.角平分线性质定理的逆命题:在一个角的内部且到角的两边距离相等的点,在这个角的角平分线上.这是一个真命题吗?已知:在∠AOB内部有一点P,且PD⊥OA,PE⊥OB,D、E为垂足且PD=PE,求证:点P在∠AOB的角平分线上.用心想一想,马到功成证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在Rt△ODP和Rt△OEP中OP=OP,PD=PE∴Rt△ODP≌Rt△OEP(HL).∴∠1=∠2(全等三角形对应角相等).21EDCPOBA•例题:在△ABC中,∠BAC=60°,点D在BC上,AD=10,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,求DE的长.解:∵DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,∴AD平分∠BAC(在一个角的内部,到角的E两边距离相等的点在这个角的平分线上).又∵∠BAC=60°,∴∠BAD=30°.在Rt△ADE中,∠AED=90°,AD=10,∴DE=2AD=2×10=5(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半).角平分线的判定定理在一个角的内部,且到角两边距离相等的点,在这个角的角平分线上.课堂小结,畅谈收获:(一)角平分线的性质定理角平分线上的点到角两边的距离相等.(二)角平分线的判定定理在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上.(三)用尺规作角平分线.角平分线(2)三角形的三个内角的角平分线,你发现了什么?用心想一想,马到功成发现:三角形的三个内角的角平分线交于一点.这一点到三角形三边的距离相等.剪一个三角形纸片,通过折叠找出每个角的角平分线,观察这三条角平分线,你是否发现同样的结论?与同伴交流.DFEMNCBAP用心想一想,马到功成DEFMNCBAP证明:三角形三条角平分线相交于一点.已知:如图,设△ABC的角平分线.BM、CN相交于点P,求证:P点在∠BAC的角平分线上.证明:过P点作PD⊥AB,PF⊥AC,PE⊥BC,其中D、E、F是垂足∵BM是△ABC的角平分线,点P在BM上∴PD=PE同理:PE=PF.∴PD=PF.∴点P在∠BAC的平分线上∴△ABC的三条角平分线相交于点P.定理:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.三角形角平分线的性质定理比较三角形三边的垂直平分线和三条角平分线的性质定理三边垂直平分线三条角平分线三角形锐角三角形交于三角形内一点交于三角形内一点钝角三角形交于三角形外一点直角三角形交于斜边的中点交点性质到三角形三个顶点的距离相等到三角形三边的距离相等如图:直线L1、L2、L3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有几处?满足条件共4个P1Pl3l21lCBA[例1]如图,在△ABC中.AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)已知CD=4cm,求AC的长;(2)求证:AB=AC+CD.用心想一想,马到功成DABEC(1)解:∵AD是△ABC的角平分线,∠C=90°,DE⊥AB∴DE=CD=4cm∵AC=BC∴∠B=∠BAC(等边对等角)∵∠C=90°,∴∠B=×90°=45°.∴∠BDE=90°—45°=45°.∴BE=DE(等角对等边).在等腰直角三角形BDE中(勾股定理),∴AC=BC=CD+BD=(4+)cm.21cm242DEBD224[例1]如图,在△ABC中.AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)已知CD=4cm,求AC的长;(2)求证:AB=AC+CD.用心想一想,马到功成DABEC(2)证明:由(1)的求解过程可知,Rt△ACD≌Rt△AED(HL)∴AC=AE.∵BE=DE=CD,∴AB=AE+BE=AC+CD.这节课有何收获?