530201739120330....(60)(6)1cF1,F2,F3,F4F1=F2=FaF3=F4=Fb..1(1)(2)OAp66Fac¡2p33Fbc(2)(2)FaFbFb=p24Fa(3)(2)Fa=Fb=F1¡2p22Fc.OFx=0,Fy=p22Fa,Fz=p22FaMx=0,My=¡Fbc,Mz=p22Fac¡Fbc.(1)MOA=MO¢eOA=p66Fac¡2p33Fbc(2)MO¢FR=0)Fb=p24Fa(3)Mmin=MO¢eFR=1¡2p22Fc.(6)2ABmr.ABCACACB.C...(g)2(1)(2)A(3)(2)(4)AB38gt2.2017{08{01.5()531:(1)3.(2)A.BFT=maAPMB=0;FTr¡J®=0maAr¡12mr2®=0)aA=12r®PMD=0;m(aA+r®)r+J®¡mgr=0)aA=g4)aB=aA+r®=3g4)hB=12aBt2=38gt2.3(6).445±BA,C.3F.4(1)(2)DHF()(2)(4)BE3p2F=2().(1)HFDH=F()5(2)1||¡(Fh+3Fh)±µ1+ÃFBEp22¢2h+Fh!±µ2=0±µ1=±µ2FBE=3p22F()62||.PMB=0)FC¡FA=0(1)PFX=0)FBx¡F=0(2)PFY=0)FBy+FA+FC¡2F=0(3)PMJ=0)p2FBEh+FC¢3h=0(4)5322017397BPFX=0)¡p22FBE+p22FBI¡FBx=0(5)PFY=0)¡p22FBE¡p22FBI+FBy=0(6)FBE=3p22F()(6)8lmABµ.BA'm=30±.().AB.8(1)(3)µtan¡1(p3=2)6µ90±(2)(3)aµ:tan¡1Ãp32!6µ60±a6g¡2p3=3¡cotµ¢60±6µ90±a6gcotµ.:(1)l2cosµ=lsinµ¢tan'm)µ0=tan¡1µ12cot'm¶tan¡1¡p3=2¢6µ90±98:FAS¡FB=0FAN¡G=0FBlsinµ¡Gl2cosµ=0FASFAN6tan'm.(2)µ0=tan¡1¡p3=2¢6µ60±5()53310aAtanÃ=CHEH=OE¡OB=2BD=2=2p33¡cotµamax=gtanÃ=gÃ2p33¡cotµ!µ60±aAamax=gcotµ..11(6)12()B.u0Ou0.R..12(1)(2)p5u(2)(2)4u2=R(3)(2)5p5R=8.:::vB=ve+vr13v=p5uvBx=vecos45±=uvBy=¡2u¿B=vBvB=p55i¡2p55jaB=ae+ar+aC,ae=u2R;ar=u2R;aC=2u2RaB=ae+ar+aC=¡4u2RaB=¡4u2Ri53420173914a¿B=aB¢¿B=¡4p55u2R,,90±,anB=pa2B¡(a¿B)2=8p55u2R,½=v2anB=5p58R.(5)15µABC2BC2.C1C2a,±µ(1)(2)(FN1FN2)2FN1¡FN2cosµ=0(2)(3)(¢l1¢l2)¢l1+2¢l2=cosµ=±.15(1)PmB=0)2FN1¡FN2cosµ=0.16(2)B'*¢l2=cosµ=a'±¡¢l1=2a')¢l1+2¢l2=cosµ=±(5)17.ABl2EIBCBDlEI.ABBCBDB.B.BCBDW.DfD=W=8l3=(3EI).17fD=fB+µBl+f0DfB=(2W)l33(2EI)+(2Wl)l22(2EI)=Wl36EIµB=(2W)l22(2EI)+(2Wl)l(2EI)=3Wl22EIf0D=Wl33EI(6)°max=5£10¡428MPa.E=200GPaº=0:25.(1)(3)¾1=54MPa¾2=0MPa¾3=¡26MPa(2)(3)¾r3=80MPa.5()535G=E2(1+º)=80GPa,¾z=0¾x¡¾y=2£5£104£0:8£105=80MPa¾x+¾y=28MPa¾1=54MPa¾2=0¾3=¡26MPa¿max=¾1¡¾32=40MPa¾r3=2¿max=80MPa.(6)18.(1)(2)F()(2)(4)F=¼2EI=(2l2).18F=¼2EI2l2(8)19ACBEI0:8EI.Cm.(1)(4)AM=5p218m(2)(4)BT=2p29m¡2p29m.19£CC=Za0M1M1EIdx+Za0T1T1GIpdx+Za0M2M2EIdy+Za0T2T2GIpdy=1EIZa0·1p2¢µm2p2+Xp2¶dx+1p2¢µm2p2+Xp2¶dy¸+1GIpZa0·1p2¢µ¡m2p2+Xp2¶dx¡1p2¢µm2p2¡Xp2¶dy¸=020X=¡12¢1EI¡1GIp1EI+1GIpm=m18M=Xp2+p24m=5p218mT=p24m¡Xp2=2p29mT=¡p24m+Xp2=¡2p29m536201739(60)(15)21(a)mAC.ACOC.r'A(21(b)).rOJO..(a)(b)21(1)(5)B'(2)(6)'(3)(4)S':O..(1),O.12JO!2=2mgr(1¡cos')(1)(7)!2=4mgrJO(1¡cos')22(7)®=2mgrJOsin'(1)(8)(7)O.FN2=2m(¡anCsin'+a¿Ccos')(9)anC=r!2,a¿C=r®.(9).(9)FN2=4m2r2gJOsin'(3cos'¡2)(2)FN2=0.'0=cos¡123(1)!0=2rmgr3JO.(2):'6'0,!=2rmgrJO(1¡cos')(1)23''0CvCx0=r!0cos'0=4r3rmgr3JO5()537OvOCvC=vO+vCO(1)CvCx=vO+r!cos'=r!0cos'0(1)(10)12JC!2+12£2m££(vCx0)2+(r!sin')2¤=2mgr(1¡cos')(2)(11)JC=JO¡2mr2.(11)!=s4mgr(1¡cos')¡2mr2!20cos2'0JO¡2mr2cos2'=23s9mgr(1¡cos')¡2mr2!20JO¡2mr2cos2'(''0)(1)!0=2rmgr3JO,'0=cos¡1µ23¶.(3):'6'0S=0(1)''0.vO=dSdt=dSdµdµdt=!dSdµ(1)24(10)dSdµ=r!0cos'0!(µ)¡rcosµ(1)sin'0=p53S=r!0Z''0sJO¡2mr2cos2µ9mgr(1¡cosµ)¡2mr2!20dµ¡rÃsin'¡p53!(''0)(1)(15)25hmACB.ACvbAb.J=mh2=6ABC¹.(1)(3)(2)(3)b=5h=6(3)(9)m=21.Bbvb25:....2653820173927(1):ImvO0=IJO!0=Iµh2¡b¶9=;(1)(12)JO=16mh2(12)vO0=Im;!0=6Imh2µh2¡b¶B0B.vO0¡x!0=0(1)x=h6(1=2¡b=h)³b6=h2´(1)(13)b=h=2.xO.(2):b=5h=6(13)x=¡h=2.AC..JO®=MO(1)(14)3.28MO=¹mgh2(1)(14)®=3¹gh()(1)(3):BvB=0(13)b=h6(1)Bm21vb¢56h=JB!0¡m21v0b¢56h(1)(15)29v0bJB=JO+m4h2=512mh2D[vD]n=BD¢!0¢cosµ=56h!0v0b+[vD]n=vb(1)(16)5()539(15)(16)!0=3vb17h(1)Bq(FnB0)2+(F¿B0)26¹mg2(1)(17)BmanO0=FnB0ma¿O0=¹mgp55+F¿B0JB®0=MB=¹mghp549=;(1)(18)anO0=h2!20,a¿O0=h2®0(18)®0=3p5¹g5h,a¿O0=3p5¹g10,F¿B0=p5¹mg10,FnB0=12mh!20.(17)vb6343sp5¹gh10(1)!!0,anOh2!20,FnBFnB0.B.(1)(15)30Em.Rrr=R¿1.(1)(3)(2)(10)'(3)(4).Y=X¿1X+Y¼X.30:(1):Mz=¡mR(´)(1)(19)31.(½;µ)=wR+½cosµ=½(cos(µ+')¡cosµ)R+½cosµ(5)¼½R(cos(µ+')¡cosµ)32¾=E¼E½R[cos(µ+')¡cosµ](20)Mz=ZAy¾dA;My=¡ZAz¾dA'y=½sin(µ+');z=½cos(µ+')(20)MzMyMz=ZZ½sin(µ+')E½(cos(µ+')¡cosµ)R+½cosµ½dµd½¼ZZ½sin(µ+')E½[cos(µ+')¡cosµ]R½dµd½=ERZ2¼0sin(µ+')[cos(µ+')¡cosµ]dµZr0½3d½540201739My=¡ZZ½cos(µ+')E½[cos(µ+')¡cosµ]R+½cosµ½dµd½¼¡ZZ½cos(µ+')E½(cos(µ+')¡cosµ)R½dµd½=¡ERZ2¼0cos(µ+')[cos(µ+')¡cosµ]dµZr0½3d½Mz=¡¼Er44Rsin'(´)(21)My=¡¼Er44R(1¡cos')(22)(19)(22)sin'=4R2m¼Er4(23)mm'06'¼.(23)(22)My=¡¼Er44R241¡s1¡µ4R2m¼Er4¶235(2)(24)Mz=¡mR(´)My=¡¼Er44R241¡s1¡µ4R2m¼Er4¶235()(21)(23).(2)'(23)'=sin¡1µ4R2mE¼r4¶(2)(3)Mmax(21)(22)M=qM2z+M2y=¼Er42Rsin'2'=¼M=Mmax(1)Mmax=¼Er42R(2)33(15)3435tDR.d...t=D¿1D=R¿1d=D¿1.EsEº¹.34355()541(1)n35P..(3)¢l0;(2)F0;(5)¾l(36)¾v.36(2)(5)(1)p.¢F¢¾v.cos¼n¼1X=Y¿1Y+X¼Y.(1)nR0=R¡D+±+d2®2=tan¡1µd2R0¶nn=2¼®=¼tan¡1µd2R0¶¼¼tan¡1µd2R¶(25)D0=D+±37¢l0g¢D02=FqD02=@F@µq=¹gFjµ=2n¼=P9=;(26)F(µ)=Pe¹(µ¡2n¼)(27)PF(0)=Pe¡2n¼¹¢l0=Z0N(µ)EsAds=1EsAZ2n¼0F(µ)D02dµ¢l0=D02EsAPe¡2n¼¹1¹e¹µ¯¯2n¼0=D0P2EsA¹(1¡e¡2n¼¹)¼DP2EsA¹(1¡e¡2n¼¹)(28)F0F=F0,.¢l0=F0n¼D0EsA(29)F0=EsA¢l0n¼D0=P2¹n¼(1¡e¡2n¼¹)(30)¾l¾v542201739¾l¾l=0(31)¾v.38.1®=2¼=nµj=(j¡1=2)®n=2Xj=1F0sinµj¡¾v¢2R¢2±¡2¼D2±¾l=0(32)39n=2Xj=1sinµj=1d0n=2Xj=1d0sinµj=1d02R=2Rd0(33)d0dd0=R0R=R¡D+±+d2R=1¡D+±+d2Rd0=d1¡D+±+d2R(33)(32)2F0d0R¡4¾vR±¡¼D±¾l=0(34)¾v=14R±µF02Rd0¡¼D±¾l¶(31)¾v=F02±d0¾v=P4¹n¼±d0(1¡e¡2n¼¹)¼P4¹n¼±d(1¡e¡2n¼¹)(35)2n2¡1Xj=1F0sinµj¡¾v2R2±¡¾l¼D±=0µj=j®;®=2¼nn2¡1Xj=1d0sinµj=2Rcos®2=2Rcos¼n¼2R40(32)cos(¼=n)¼11.(34).(2)¾vpp¢¾v()¢¾g()¢F()¢¾l