流体力学流动阻力和水头损失

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2020/2/17流动阻力和水头损失1内容提要:主要讲解液体处于运动状态下的阻力存在的原因以及能量方程中的水头损失的计算;讨论沿程阻力系数和局部阻力系数与流动边界之间的关系和影响。第四章流动阻力和水头损失FlowResistance&HeadLoss2020/2/17流动阻力和水头损失2问题:理想液体和实际液体的区别?有无粘滞性是理想液体和实际液体的本质区别。粘滞性是液流产生水头损失的决定因素。4-1水头损失的物理概念及其分类水头损失:单位重量的液体自一断面流至另一断面所损失的机械能。一、分类:根据流动边界情况沿程水头损失局部水头损失第四章流动阻力和水头损失2020/2/17流动阻力和水头损失31、沿程水头(阻力)损失hf定义:水头损失沿程均有并随沿程长度增加。主要由于液体与管壁以及液体本身的内部摩擦,使得液体能量沿程降低。第四章流动阻力和水头损失2020/2/17流动阻力和水头损失4特点:1)沿程阻力均匀地分布在整个均匀流流段上;2)沿程阻力与管段的长度成正比。u1u2abcdhfa-bhjbhjahfb-chjchfc-du22/(2g)hw=hf+hju12/(2g)第四章流动阻力和水头损失2020/2/17流动阻力和水头损失52、局部水头(阻力)损失hj定义:局部区域内液体质点由于相对运动产生较大能量损失。特点:能损发生在流动边界有急变的流域及其附近第四章流动阻力和水头损失2020/2/17流动阻力和水头损失6常见的发生局部水头损失区域只要局部地区边界的形状或大小改变,液流内部结构就要急剧调整,流速分布进行改组流线发生弯曲并产生旋涡,在这些局部地区就有局部水头损失。第四章流动阻力和水头损失2020/2/17流动阻力和水头损失7(1)液体具有粘滞性。(2)由于固体边界的影响,液流内部质点之间产生相对运动。液体具有粘滞性是主要的,起决定性作用。液流产生水头损失的两个条件第四章流动阻力和水头损失2020/2/17流动阻力和水头损失8式中:代表该流段中各分段的沿程水头损失的总和;代表该流段中各种局部水头损失的总和。jfwhhhfhjh液流的总水头损失hw第四章流动阻力和水头损失2020/2/17流动阻力和水头损失9液流边界几何条件对水头损失的影响1、液流边界横向轮廓的形状和大小对水头损失的影响可用过水断面的水力要素来表征,如过水断面的面积A、湿周及力半径R等。对圆管:442dddAR第四章流动阻力和水头损失2020/2/17流动阻力和水头损失102、液流边界纵向轮廓对水头损失的影响因边界纵向轮廓的不同,可有两种不同形式的液流:均匀流与非均匀流均匀流第四章流动阻力和水头损失2020/2/17流动阻力和水头损失11非均匀流均匀流时无局部水头损失,非均匀渐变流时局部水头损失可忽略不计,非均匀急变流时两种水头损失都有。第四章流动阻力和水头损失+hj2020/2/17流动阻力和水头损失12二、水头损失的计算公式沿程阻力损失的计算公式为:hf=(l/d)u2/(2g)局部阻力损失的计算公式为:hj=u2/(2g)上述公式是长期工程实践经验的总结,把能量损失的计算问题转化为求阻力系数的问题。这两系数必须借助于典型实验,用经验或半经验方法求得第四章流动阻力和水头损失2020/2/17流动阻力和水头损失13hf与hj的比较:相同:都是由于液体在运动过程中克服阻力而引起不同:沿程阻力主要为“摩擦阻力”;局部阻力主要是因为固体边界形状突然改变,从而引起水流内部结构遭受破坏,产生漩涡,以及局部阻力之后,水流还要重新调整整体结构以适应新的均匀流条件所造成的。第四章流动阻力和水头损失2020/2/17流动阻力和水头损失144-2雷诺实验——层流与紊流一、雷诺试验第四章流动阻力和水头损失2020/2/17流动阻力和水头损失15第四章流动阻力和水头损失2020/2/17流动阻力和水头损失16层流:各层质点互不掺混紊流:随机脉动的流动过渡流:层流与紊流之间的流动第四章流动阻力和水头损失2020/2/17流动阻力和水头损失17对于等径管,由能量方程知计算公式为:hf=(p1-p2/记录层流与紊流情况下的平均流速u与对应的hf,作u-hf关系曲线。第四章流动阻力和水头损失2020/2/17流动阻力和水头损失18第四章流动阻力和水头损失vcvc2020/2/17流动阻力和水头损失19线段AC及ED都是直线,用表示即层流时适用直线AC,,即m=1。紊流时适用直线DE,,m=1.75~2。lglglgmkhfmfkh0145)25631560('0'02第四章流动阻力和水头损失vcvc2020/2/17流动阻力和水头损失20临界速度:流态转变时的速度。下临界速度:由紊流转变为层流时的速度vc上临界速度:由层流转变为紊流时的速度vc’实验证明,vc远小于vc’通过正反两种实验情况,雷诺得出如下结果:当vvc’时,流体作紊流运动;当vvc时,流体作层流运动;当vcvvc’时,流态不稳,可能是层流也可能是紊流。第四章流动阻力和水头损失2020/2/17流动阻力和水头损失21二、雷诺数与其临界值雷诺从一系列试验中发现:1)不同种类液体在相同直径的管中进行实验,所测得的临界速度是各不相同的;2)同种液体在不同直径的管中实验,所得的临界速度也不同。故判定临界速度是液体的物理性质(,)和管径(d)的函数。第四章流动阻力和水头损失2020/2/17流动阻力和水头损失22液体形态的判别雷诺数:临界雷诺数:液流型态开始转变时的雷诺数。对圆管:对明渠及天然河道ddRe2300Rec500ReRc第四章流动阻力和水头损失2020/2/17流动阻力和水头损失23对于非圆管,如矩形、三角形、环形管等,管道的特征尺寸是管道的当量直径(或称水力直径),即:d=4A/而过流断面面积与湿周之比为水力半径,故d=4R第四章流动阻力和水头损失2020/2/17流动阻力和水头损失24三、紊流形成过程的分析雷诺实验表明层流与紊流的主要区别在于紊流时各流层间液体质点有不断互相混掺作用,而层流则无.第四章流动阻力和水头损失2020/2/17流动阻力和水头损失25(a)(b)(c)涡体的形成是混掺作用产生的根源。第四章流动阻力和水头损失2020/2/17流动阻力和水头损失26涡体的形成并不一定形成紊流,只有当惯性作用与粘滞作用相比强大到一定程度时,才可能形成紊流。所以雷诺数是表征惯性力与粘滞力的比值。第四章流动阻力和水头损失2020/2/17流动阻力和水头损失274-3均匀流基本方程一、均匀流方程切向应力分布均匀流中只产生沿程水头损失,流层间的粘性阻力(切应力)是造成沿程水头损失的直接原因。任取一圆柱体流束,对于恒定流的圆管均匀流段,其内部的圆柱体也必处于平衡状态,分析其受力:第四章流动阻力和水头损失2020/2/17流动阻力和水头损失281)动水压力1断面2断面Fp1=Ap1Fp2=Ap22)重力G=lA3)摩擦阻力F=l’l00z1z2Gp1p2122rr0圆柱体处于平衡状态,故Fp1-Fp2+Gsin-F=0第四章流动阻力和水头损失2020/2/17流动阻力和水头损失29即Ap1-Ap2+Alsin-’l=0由于lsin=z1-z2,故(p1-p2)/+(z1-z2)=’l/(A)对1-2两断面列能量方程:z1+p1/+v12/(2g)=z2+p2/+v22/(2g)+hf等截面,故v1=v2故,hf=(p1-p2)/+(z1-z2)故hf=’l/(A)=l/(R’)第四章流动阻力和水头损失2020/2/17流动阻力和水头损失30或=R’(hf/l)=R’J’R’——流束的水力半径,R’=A/’J’——流束的水力坡度(或坡能),J’=hf/l上式为流束的均匀流沿程水头损失与切应力的关系,称为流束的均匀流方程,推导过程没有涉及产生能损的原因,故对层流或紊流均适用。按上述相同的方法可求得圆管的均匀流方程0=R(hf/l)=RJ第四章流动阻力和水头损失2020/2/17流动阻力和水头损失31二、圆管过流断面上切向应力分布由于圆管流为恒定流,断面上的压力满足静压分布,即p/+z=const故流束的水力坡度J’=圆管的水力坡度J故/0=R’/R=r/r0可见圆管过流断面上切应力与半径成线性关系,在管轴处最小(=0),管壁处最大(=0)。第四章流动阻力和水头损失2020/2/17流动阻力和水头损失324-4圆管中的层流运动在实际工作中,虽然绝大多数流动为紊流运动,但层流运动也存在于某些小管径,小流速的管道中或粘性较大的机械润滑系统的输油管中。第四章流动阻力和水头损失2020/2/17流动阻力和水头损失33一、流动特性层流时,粘性起主要作用,在管壁处因液体被粘附在管壁上,故流速为0。牛顿液体:=du/dy=du/d(r0-r)=-du/dr第四章流动阻力和水头损失2020/2/17流动阻力和水头损失34二、速度分布上式代入均匀流方程=R’(hf/l)=R’J-du/dr=(r/2)J积分得:u=-Jr2/(4)+Const当r=r0时,u=0,得积分常数为:Const=Jr02/(4)第四章流动阻力和水头损失2020/2/17流动阻力和水头损失35过流断面上的速度分布为u=J(r02-r2)/(4)可见流速在该断面上与半径r成二次旋转抛物面规律分布。最大流速:r=0,umax=Jr02/(4)流量:Q=∫AudA=∫0r0uπdr2=Jr04/(8)平均流速:v=Q/A=Jr02/(8)v第四章流动阻力和水头损失2020/2/17流动阻力和水头损失36可见,平均流速为最大流速的一半。如果能用皮托管量出管轴处的速度,则可直接计算出流量为:Q=vA=(1/2)umaxA三、圆管层流沿程水头损失的计算又v=Q/A=Jr02/(8)故hf=lJ=8vl/(r02)可见层流沿程阻力与平均流速的一次方成正比第四章流动阻力和水头损失2020/2/17流动阻力和水头损失37又r0=d/2,Re=ρdv/故hf=8vl/(r02)=(64/Re)(l/d)v2/(2g)=(l/d)v2/(2g)故圆管层流沿程阻力损失系数为:=64/Re上式表明圆管层流的沿程阻力系数与雷诺数成反比,与管壁的粗糙度无关。第四章流动阻力和水头损失2020/2/17流动阻力和水头损失38四、动能和动量修正系数(作业)将A=r2,dA=2rdr代入前面导出的动能和动量公式,可得动能修正系数:=(∫0r0u3dA)/(v3A)=(∫0r0[J(r02-r2)/(4)]3dA)/([Jr02/(8)]3A)=2动量修正系数为:=(∫0r0u2dA)/(v2A)=(∫0r0[J(r02-r2)/(4)]2dA)/([Jr02/(8)]2A)=4/3第四章流动阻力和水头损失2020/2/17流动阻力和水头损失39原因是:层流过流断面上速度分布不均,故和均大于1注意:在应用能量方程和动量方程时,不能假设它们为1。五、非圆形等断面直管层流实际工作中,用来输送液体的管道并非全采用圆形断面管道,如:梯形、同心圆环形、椭圆形、矩形、等腰三角形断面等等。第四章流动阻力和水头损失2020/2/17流动阻力和水头损失40其雷诺数计算和沿程阻力损失计算用非圆断面直管的水力半径代替圆管直径即可Re=vd/=vd/hf=(l/d)u2/(2g)Bhb1m以等腰梯形为例:假设它的边坡系数为m=ctg,边坡角,则湿周=b+2h(1+m2)0.5面积A=(b+mh)h,当量直径为d=4A/第四章流动阻力和水头损失2020/2/17流动阻力和水头损失414-5紊流运动一、紊流的特征紊流的基本特征是许许多多大小不等的涡体相互混掺前进,它们的位置、形态、流速都在时刻不断地变化。紊流实质上是非恒定流动。二、紊

1 / 89
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功