交流变换器

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

电力电子技术8-1第8章组合变流电路引言8.1间接交流变流电路8.2间接直流变流电路本章小结电力电子技术8-2第8章组合变流电路•引言基本的变流电路第2~5章分别介绍的AC/DC、DC/DC、AC/AC和DC/AC四大类基本的变流电路。组合变流电路将某几种基本的变流电路组合起来,以实现一定的新功能,即构成组合变流电路。间接交流变流电路先将交流电整流为直流电,再将直流电逆变为交流电,是先整流后逆变的组合。间接直流变流电路先将直流电逆变为交流电,再将交流电整流为直流电,是先逆变后整流的组合。电力电子技术8-38.1间接交流变流电路间接交流变流电路由整流电路、中间直流电路和逆变电路构成。分为电压型间接交流变流电路和电流型间接交流变流电路间接交流变流电路的逆变部分多采用PWM控制。电力电子技术8-48.1间接交流变流电路8.1.1间接交流变流电路原理8.1.2交直交变频器8.1.3恒压恒频(CVCF)电源电力电子技术8-58.1.1间接交流变流电路原理当负载为电动机时,通常要求间接交流变流电路具有再生反馈电力的能力,要求输出电压的大小和频率可调,此时该电路又名交直交变频电路。不能再生反馈电力的电压型间接交流变流电路的整流部分采用的是不可控整流,它只能由电源向直流电路输送功率,而不能反馈电力。图中逆变电路的能量是可以双向流动的,若负载能量反馈到中间直流电路,将导致电容电压升高,称为泵升电压。1)电压型间接交流变流电路图8-1不能再生反馈的电压型间接交流变流电路电力电子技术8-68.1.1间接交流变流电路原理使电路具备再生反馈电力的能力的方法:带有泵升电压限制电路的电压型间接交流变流电路。当泵升电压超过一定数值时,使V0导通,把从负载反馈的能量消耗在R0上。图8-2带有泵升电压限制电路的电压型间接交流变流电路利用可控变流器实现再生反馈的电压型间接交流变流电路。当负载回馈能量时,可控变流器工作于有源逆变状态,将电能反馈回电网。图8-3利用可控变流器实现再生反馈的电压型间接交流变流电路电力电子技术8-78.1.1间接交流变流电路原理整流和逆变均为PWM控制的电压型间接交流变流电路。整流和逆变电路的构成完全相同,均采用PWM控制,能量可双向流动。输入输出电流均为正弦波,输入功率因数高,且可实现电动机四象限运行。图8-4整流和逆变均为PWM控制的电压型间接交流变流电路电力电子技术8-88.1.1间接交流变流电路原理2)电流型间接交流变流电路整流电路为不可控的二极管整流时,电路不能将负载侧的能量反馈到电源侧。图8-5不能再生反馈电力的电流型间接交流变流电路图8-6采用可控整流的电流型间接交流变流电路为使电路具备再生反馈电力的能力,可采用:整流电路采用晶闸管可控整流电路。负载回馈能量时,可控变流器工作于有源逆变状态,使中间直流电压反极性。电力电子技术8-98.1.1间接交流变流电路原理图8-8整流和逆变均为PWM控制的电流型间接交流变流电路图8-7电流型交-直-交PWM变频电路实现再生反馈的电路图负载为三相异步电动机,适用于较大容量的场合。整流和逆变均为PWM控制的电流型间接交流变流电路通过对整流电路的PWM控制使输入电流为正弦并使输入功率因数为1。电力电子技术8-108.1.2交直交变频器晶闸管直流电动机传动系统存在一些固有的缺点:(1)受使用环境条件制约;(2)需要定期维护;(3)最高速度和容量受限制等。交流调速传动系统除了克服直流调速传动系统的缺点外还具有:(1)交流电动机结构简单,可靠性高;(2)节能;(3)高精度,快速响应等优点。采用变频调速方式时,无论电机转速高低,转差功率的消耗基本不变,系统效率是各种交流调速方式中最高的,具有显著的节能效果,是交流调速传动应用最多的一种方式。笼型异步电动机的定子频率控制方式,有:(1)恒压频比(U/f)控制;(2)转差频率控制;(3)矢量控制;(4)直接转矩控制等。电力电子技术8-118.1.2交直交变频器1)恒压频比控制为避免电动机因频率变化导致磁饱和而造成励磁电流增大,引起功率因数和效率的降低,需对变频器的电压和频率的比率进行控制,使该比率保持恒定,即恒压频比控制,以维持气隙磁通为额定值。恒压频比控制是比较简单,被广泛采用的控制方式。该方式被用于转速开环的交流调速系统,适用于生产机械对调速系统的静、动态性能要求不高的场合。电力电子技术8-128.1.2交直交变频器转速给定既作为调节加减速的频率f指令值,同时经过适当分压,作为定子电压U1的指令值。该比例决定了U/f比值,可以保证压频比为恒定。在给定信号之后设置的给定积分器,将阶跃给定信号转换为按设定斜率逐渐变化的斜坡信号ugt,从而使电动机的电压和转速都平缓地升高或降低,避免产生冲击。图8-9采用恒压频比控制的变频调速系统框图电力电子技术8-138.1.2交直交变频器给定积分器输出的极性代表电机转向,幅值代表输出电压、频率。绝对值变换器输出ugt的绝对值uabs,电压频率控制环节根据uabs及ugt的极性得出电压及频率的指令信号,经PWM生成环节形成控制逆变器的PWM信号,再经驱动电路控制变频器中IGBT的通断,使变频器输出所需频率、相序和大小的交流电压,从而控制交流电机的转速和转向。图8-9采用恒压频比控制的变频调速系统框图电力电子技术8-148.1.2交直交变频器2)转差频率控制在稳态情况下,当稳态气隙磁通恒定时,异步电机电磁转矩近似与转差角频率成正比。因此,控制ws就相当于控制转矩。采用转速闭环的转差频率控制,使定子频率w1=wr+ws,则w1随实际转速wr增加或减小,得到平滑而稳定的调速,保证了较高的调速范围。转差频率控制方式可达到较好的静态性能,但这种方法是基于稳态模型的,得不到理想的动态性能。电力电子技术8-158.1.2交直交变频器3)矢量控制异步电动机的数学模型是高阶、非线性、强耦合的多变量系统。传统设计方法无法达到理想的动态性能。矢量控制方式基于异步电机的按转子磁链定向的动态模型,将定子电流分解为励磁分量和与此垂直的转矩分量,参照直流调速系统的控制方法,分别独立地对两个电流分量进行控制,类似直流调速系统中的双闭环控制方式。控制系统较为复杂,但可获得与直流电机调速相当的控制性能。电力电子技术8-168.1.2交直交变频器4)直接转矩控制直接转矩控制方法同样是基于动态模型的,其控制闭环中的内环,直接采用了转矩反馈,并采用砰—砰控制,可以得到转矩的快速动态响应。并且控制相对要简单许多。电力电子技术8-178.1.3恒压恒频(CVCF)电源CVCF电源主要用作不间断电源(UPS)。UPS-UninterruptiblePowerSuppliesUPS是指当交流输入电源(习惯称为市电)发生异常或断电时,还能继续向负载供电,并能保证供电质量,使负载供电不受影响的装置。UPS广泛应用于各种对交流供电可靠性和供电质量要求高的场合。电力电子技术8-188.1.3恒压恒频(CVCF)电源1)UPS基本工作原理:图8-10UPS基本结构原理图市电正常时,由市电供电,市电经整流器整流为直流,再逆变为50Hz恒频恒压的交流电向负载供电。同时,整流器输出给蓄电池充电,保证蓄电池的电量充足。此时负载可得到的高质量的交流电压,具有稳压、稳频性能,也称为稳压稳频电源。市电异常乃至停电时,蓄电池的直流电经逆变器变换为恒频恒压交流电继续向负载供电,供电时间取决于蓄电池容量的大小。电力电子技术8-198.1.3恒压恒频(CVCF)电源图8-12具有旁路电源系统的UPS增加旁路电源系统,可使负载供电可靠性进一步提高。图8-11用柴油发电机作为后备电源的UPS为了保证长时间不间断供电,可采用柴油发电机(简称油机)作为后备电源。电力电子技术8-208.1.3恒压恒频(CVCF)电源2)UPS主电路结构图8-13小容量UPS主电路小容量的UPS,整流部分使用二极管整流器和直流斩波器(PFC),可获得较高的交流输入功率因数,逆变器部分使用IGBT并采用PWM控制,可获得良好的控制性能。图8-14大功率UPS主电路大容量UPS主电路。采用PWM控制的逆变器开关频率较低,通过多重化联结降低输出电压中的谐波分量。电力电子技术8-218.2间接直流变流电路采用这种结构的变换原因:输出端与输入端需要隔离。某些应用中需要相互隔离的多路输出。输出电压与输入电压的比例远小于1或远大于1。交流环节采用较高的工作频率,可以减小变压器和滤波电感、滤波电容的体积和重量。工作频率高于20kHz这一人耳的听觉极限,可避免变压器和电感产生噪音。变压器整流电路滤波器直流交流交流脉动直流直流逆变电路图8-15间接直流变流电路的结构间接直流变流电路:先将直流逆变为交流,再整流为直流电,也称为直-交-直电路。电力电子技术8-228.2间接直流变流电路8.2.1正激电路8.2.2反激电路8.2.3半桥电路8.2.4全桥电路8.2.5推挽电路8.2.6全波整流和全桥整流8.2.7开关电源电力电子技术8-238.2.1正激电路图8-16正激电路的原理图图8-17正激电路的理想化波形开关S开通后,变压器绕组W1两端的电压为上正下负,与其耦合的W2绕组两端的电压也是上正下负。因此VD1处于通态,VD2为断态,电感L的电流逐渐增长;S关断后,电感L通过VD2续流,VD1关断。变压器的励磁电流经N3绕组和VD3流回电源,所以S关断后承受的电压为。13(1)SiNuUN1)正激电路(Forward)的工作过程电力电子技术8-248.2.1正激电路图8-18磁心复位过程输出电压输出滤波电感电流连续的情况下输出电感电流不连续时2oi1NUUN2)变压器的磁心复位1rston3NttN开关S开通后,变压器的激磁电流由零开始,随时间线性的增长,直到S关断。为防止变压器的激磁电感饱和,必须设法使激磁电流在S关断后到下一次再开通的时间内降回零,这一过程称为变压器的磁心复位。变压器的磁心复位时间为电力电子技术8-258.2.2反激电路1)工作过程:图8-20反激电路的理想化波形图8-19反激电路原理图S开通后,VD处于断态,W1绕组的电流线性增长,电感储能增加;S关断后,W1绕组的电流被切断,变压器中的磁场能量通过W2绕组和VD向输出端释放。电力电子技术8-268.2.2反激电路2)反激电路的工作模式:电流连续模式:当S开通时,W2绕组中的电流尚未下降到零。输出电压关系:电流断续模式:S开通前,W2绕组中的电流已经下降到零。输出电压高于式(8-3)的计算值,并随负载减小而升高,在负载为零的极限情况下,,因此反激电路不应工作于负载开路状态。oon2i1offUtNUNtoU(8-3)图8-20反激电路的理想化波形图8-19反激电路原理图电力电子技术8-278.2.3半桥电路S1与S2交替导通,使变压器一次侧形成幅值为Ui/2的交流电压。改变开关的占空比,就可以改变二次侧整流电压ud的平均值,也就改变了输出电压Uo。S1导通时,二极管VD1处于通态,S2导通时,二极管VD2处于通态;当两个开关都关断时,变压器绕组N1中的电流为零,VD1和VD2都处于通态,各分担一半的电流。S1或S2导通时电感L的电流逐渐上升,两个开关都关断时,电感L的电流逐渐下降。S1和S2断态时承受的峰值电压均为Ui。1)工作过程图8-21半桥电路原理图图8-22半桥电路的理想化波形电力电子技术8-288.2.3半桥电路2)数量关系由于电容的隔直作用,半桥电路对由于两个开关导通时间不对称而造成的变压器一次侧电压的直流分量有自动平衡作用,因此不容易发生变压器的偏磁和直流磁饱和。当滤波电感L的电流连续时:如果输出电感电流不连续,输出电压U0将高于式(8-4)的计算值,并随负载减小而升高,在负载为零的极限情况下,oon2i1UtNUNT2io12NUUN(8-4)图8-21半桥电路原理图图8-22半桥电路的理想化波形电力电子技术8-298.2.4全桥电路全桥电路中,互为对角的两个开关同时导通,同一侧半桥上下两开关交替导通,使变压器

1 / 39
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功