数学:231《离散型随机变量的均值与方差-期望值》PPT课件(新人教A版选修2-3)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

新课标人教版课件系列《高中数学》选修2-32.3.1《离散型随机变量的均值与方差-期望值》教学目标•1了解离散型随机变量的期望的意义,会根据离散型随机变量的分布列求出期望.•⒉理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),则Eξ=np”.能熟练地应用它们求相应的离散型随机变量的期望•教学重点:离散型随机变量的期望的概念•教学难点:根据离散型随机变量的分布列求出期望•授课类型:新授课课时安排:2课时教具:多媒体、实物投影仪数学期望的定义练习一复习引入问题提出本课小结作业:课本73P至74P练习2,3,4,5离散型随机变量的均值与方差(一)期望应用,例2.例3前面,我们认识了随机变量的分布列.离散型随机变量的均值与方差(一)设离散型随机变量可能取的值为12,,,,,ixxx1x2xixP1p2pip为随机变量的概率分布列,简称为的分布列.取每一个值的概率则称表()iiPxp(1,2,)ixi对于离散型随机变量,确定了它的分布列,就掌握了随机变量取值的统计规律.但在实际应用中,我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.由概率可知,在100次射击之前,估计得i环的次数为()100Pi.思考下面的问题:456789100.020.040.060.090.280.290.22某射手射击所得环数的分布列如下:P在100次射击之前,试估计该射手100次射击的平均环数.分析:平均环数=总环数100所以,总环数约等于(4×0.02+5×0.04+6×0.06+…+10×0.22)×100.故100次射击的平均环数约等于4×0.02+5×0.04+6×0.06+…+10×0.22=8.32.一般地,一般地:对任一射手,若已知他的所得环数的分布列,即已知则可以预计他任意n次射击的平均环数是记为()(0,1,2,,10),Pii0(0)1(1)10(10)PPP我们称为此射手射击所得环数的期望,它刻划了所得环数随机变量所取的平均值。EE更一般地关于平均的意义,我们再看一个例子,思考:课本第69页的定价怎样才合理问题?根据定义可推出下面两个结论:结论一证明结论二证明数学期望的定义:一般地,随机变量的概率分布列为则称1122iinnExpxpxpxp为的数学期望或均值,简称为期望.它反映了离散型随机变量取值的平均水平.P1x2xnx1p2pnpixip结论1:则;,ab若EaEb结论2:若ξ~B(n,p),则Eξ=np.练习一(巩固定义)()(),1,2,3iiPaxbPxi所以,的分布列为1122112212(()()(())))(nnnnnEaxbpaxbpaxbpaxpxpxpbpEabaEppaEbb即结论1:则,ab若EaEbP1axb2axbnaxb1p2pnpiaxbip练习一(巩固定义)练习一练习二1、随机变量ξ的分布列是ξ135P0.50.30.2(1)则Eξ=.2、随机变量ξ的分布列是2.4(2)若η=2ξ+1,则Eη=.5.8ξ47910P0.3ab0.2Eξ=7.5,则a=b=.0.40.13.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,则他罚球1次的得分ξ的期望为.练习二1.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取2个,则其中含红球个数的数学期望是.1.22.(1)若E(ξ)=4.5,则E(-ξ)=.(2)E(ξ-Eξ)=.0.7(详细解答过程见课本例1)-4.50这是一个特殊的二项分布的随机变量的期望,那么一般地,若ξ~B(n,p),则Eξ=?∴Eξ=0×Cn0p0qn+1×Cn1p1qn-1+2×Cn2p2qn-2+…+k×Cnkpkqn-k+…+n×Cnnpnq0∵P(ξ=k)=Cnkpkqn-k证明:=np(Cn-10p0qn-1+Cn-11p1qn-2+…+Cn-1k-1pk-1q(n-1)-(k-1)+…+Cn-1n-1pn-1q0)=np(p+q)n-1=npξ01…k…nPCn0p0qnCn1p1qn-1…Cnkpkqn-k…Cnnpnq0(∵kCnk=nCn-1k-1)结论2:若ξ~B(n,p),则Eξ=np期望在生活中的应用广泛,见课本第72页例2.例3不一定,其含义是在多次类似的测试中,他的平均成绩大约是90分思考1思考2例2.一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项正确,每题选对得5分,不选或选错不得分,满分100分.学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选项中随机地选择一个.求学生甲和学生乙在这次测验中的成绩的均值.解:设学生甲和学生乙在这次测验中选择正确的选择题个数分别是和η,则ξ~B(20,0.9),η~B(20,0.25),所以Eξ=20×0.9=18,Eη=20×0.25=5.由于答对每题得5分,学生甲和学生乙在这次测验中的成绩分别是5ξ和5η.这样,他们在测验中的成绩的期望分别是E(5ξ)=5Eξ=5×18=90,E(5η)=5Eη=5×5=25.思考:学生甲在这次测试中的成绩一定会是90分吗?他的均值为90分的含义是什么?思考1.某商场的促销决策:统计资料表明,每年端午节商场内促销活动可获利2万元;商场外促销活动如不遇下雨可获利10万元;如遇下雨可则损失4万元。6月19日气象预报端午节下雨的概率为40%,商场应选择哪种促销方式?解:因为商场内的促销活动可获效益2万元设商场外的促销活动可获效益万元,则的分布列P10-40.60.4所以E=10×0.6+(-4)×0.4=4.4因为4.42,所以商场应选择在商场外进行促销.学习小结:1、本节课学习了离散型随机变量ξ的期望及公式:(1)E(aξ+b)=aEξ+b;(2)若ξ~B(n,p),则Eξ=np2、会根据离散型随机变量的分布列求出期望。作业:课本73P至74P练习2,3,4,5思考2.有场赌博,规则如下:如掷一个骰子,出现1,你赢8元;出现2或3或4,你输3元;出现5或6,不输不赢.这场赌博对你是否有利?11111030.6236E对你不利!劝君莫参加赌博.课外思考:彩球游戏准备一个布袋,内装6个红球与6个白球,除颜色不同外,六个球完全一样,每次从袋中摸6个球,输赢的规则为:6个全红赢得100元5红1白赢得50元4红2白赢得20元3红3白输100元2红4白赢得20元1红5白赢得50元6个全白赢得100元你动心了吗?作业:课本73P至74P练习2,3,4,5

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功