变量之间的相关关系

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第一课时2.3变量间的相关关系2.3.1变量之间的相关关系2.3.2两个变量的线性相关问题提出1.函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系.函数关系:两个变量之间是一种确定的关系2.在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?由学习经验可知:物理成绩确实与数学成绩有一定的关系,除此之外,学习兴趣、学习时间、教学水平等,也是影响物理成绩的一些因素,但这两个变量是有一定关系的,它们之间是一种不确定性的关系.类似于这样的两个变量之间的关系,我们称之为相关关系。有必要从理论上作些探讨,如果能通过数学成绩对物理成绩进行合理估计,将有着非常重要的现实意义.不是知识探究(一):变量之间的相关关系思考1:考察下列问题中两个变量之间的关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄.这些问题中两个变量之间的关系是函数关系吗?均不是!上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何?自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.一、相关关系的概念2、相关关系与函数关系的异同点不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系。相同点:均是指两个变量的关系相关关系—当自变量取值一定,因变量的取值带有一定的随机性(非确定性关系)函数关系---函数关系指的是自变量和因变量之间的关系是相互唯一确定的.1、对相关关系的理解1、探究下面变量间的关系:1.球的体积与该球的半径;2.粮食的产量与施肥量;3.小麦的亩产量与光照;4.匀速行驶车辆的行驶距离与时间;5.角α与它的正切值A2、下列两变量中具有相关关系的是()A、角度和它的余弦值B、正方形的边长和面积C、成人的身高和视力D、身高和体重D练习:3.下列两个变量之间的关系哪个不是函数关系()A.角度和它的余弦值B.正方形边长和面积C.正n边形的边数和它的内角和D.人的年龄和身高D在现实生活中存在着大量的相关关系,如何判断和描述相关关系,统计学发挥着非常重要的作用,变量之间的相关关系带有不确定性,这需要通过大量的数据,对数据进行统计分析,发现规律,才能作出科学的判断。对具有相关关系的两个变量进行统计分析的方法叫回归分析相关关系是进行回归分析的基础,同时,也是散点图的基础。知识探究(二):散点图【问题】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数.年龄23273941454950脂肪9.517.821.225.927.526.328.2年龄53545657586061脂肪29.630.231.430.833.535.234.6思考1:对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?年龄23273941454950脂肪9.517.821.225.927.526.328.2年龄53545657586061脂肪29.630.231.430.833.535.234.6思考2:为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?051015202530354020253035404550556065年龄脂肪含量思考3:上图叫做散点图,你能描述一下散点图的含义吗?在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图.散点图:用来判断两个变量是否具有相关关系.思考4:观察散点图的大致趋势,人的年龄与人体脂肪含量具有什么相关关系?051015202530354020253035404550556065年龄脂肪含量在上面的散点图中,这些点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.一般地,如果两个变量成正相关,那么这两个变量的变化趋势如何?思考6:如果两个变量成负相关,从整体上看这两个变量的变化趋势如何?其散点图有什么特点?思考7:你能列举一些生活中的变量成正相关或负相关的实例吗?正相关的特点:一个变量随另一个变量的变大而变大,散点图中的点散布在从左下角到右上角的区域负相关的特点:一个变量随另一个变量的变大而变小,散点图中的点散布在从左上角到右下角的区域理论迁移例1在下列两个变量的关系中,哪些是相关关系?①正方形边长与面积之间的关系;②作文水平与课外阅读量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系.例2以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:房屋面积(平方米)617011511080135105销售价格(万元)12.215.324.821.618.429.222画出数据对应的散点图,并指出销售价格与房屋面积这两个变量是正相关还是负相关.05101520253035050100150面积售价售价随房屋面积的变大而增加,散点图中的点散布在从左下角到右上角的区域.1.对于两个变量之间的关系,有函数关系和相关关系两种,其中函数关系是一种确定性关系,相关关系是一种非确定性关系.3.一般情况下两个变量之间的相关关系成正相关或负相关,类似于函数的单调性.2.散点图能直观反映两个相关变量之间的大致变化趋势,利用计算机作散点图是简单可行的办法.课堂小结一、选择题(每题5分,共15分)1.下列关系中为相关关系的有()①学生的学习态度和学习成绩之间的关系;②教师的执教水平与学生的学习成绩之间的关系;③学生的身高与学生的学习成绩之间的关系;④某个人的年龄与本人的知识水平之间的关系.(A)①②(B)①③(C)②③(D)②④【解析】选A.据相关性的定义可知①②为相关关系,③④无相关关系.巩固练习3.在下列各变量之间的关系中:①汽车的重量和百公里耗油量.②正n边形的边数与内角度数之和.③一块农田的小麦产量与施肥量.④家庭的经济条件与学生的学习成绩.是相关关系的有()(A)①②(B)①③(C)②③(D)③④二、填空题(每题5分,共10分)4.(2010·广东高考)某市居民2005~2009年家庭平均收入x(单位:万元)与年平均支出y(单位:万元)的统计资料如表所示:根据统计资料,居民家庭年平均收入的中位数是______,家庭年平均收入与年平均支出有______的线性相关关系.(填“正相关”、“负相关”)【解析】收入数据按大小排列为:11.5、12.1、13、13.5、15,所以中位数为13.答案:13正相关三、解答题(6题12分,7题13分,共25分)6.某品牌服装的广告费支出x(单位:万元)与销售额y(单位:万元)之间有如下的对应数据:试画出散点图,并判断广告费x与销售额y是否具有线性相关关系.【解析】根据题中数据画出散点图如下:观察散点图,可以发现5个样本点从整体上看大致在一条直线附近,所以变量x、y之间具有线性相关关系.知识探究(三):回归直线思考1:一组样本数据的平均数是样本数据的中心,那么散点图中样本点的中心如何确定?它一定是散点图中的点吗?(,)xy年龄20253035404550556065510152025303540脂肪含量0思考2:在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?20253035404550556065510152025303540脂肪含量0知识探究(三):回归直线思考2:在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?20253035404550556065510152025303540脂肪含量0知识探究(三):回归直线思考2:在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?这些点大致分布在一条直线附近.20253035404550556065510152025303540脂肪含量0知识探究(三):回归直线思考3:对一组具有线性相关关系的样本数据,你认为其回归直线是一条还是几条?20253035404550556065510152025303540脂肪含量0知识探究(三):回归直线思考4:在样本数据的散点图中,能否用直尺准确画出回归直线?借助计算机怎样画出回归直线?20253035404550556065510152025303540脂肪含量0知识探究(三):回归直线知识探究(四):回归方程在直角坐标系中,任何一条直线都有相应的方程,回归直线的方程称为回归方程.对一组具有线性相关关系的样本数据,如果能够求出它的回归方程,那么我们就可以比较具体、清楚地了解两个相关变量的内在联系,并根据回归方程对总体进行估计.思考1:回归直线与散点图中各点的位置应具有怎样的关系?20253035404550556065510152025303540脂肪含量0知识探究(四):回归方程思考1:回归直线与散点图中各点的位置应具有怎样的关系?整体上最接近20253035404550556065510152025303540脂肪含量0知识探究(四):回归方程思考2:对于求回归直线方程,你有哪些想法?20253035404550556065510152025303540脂肪含量0知识探究(四):回归方程思考3:对一组具有线性相关关系的样本数据:(x1,y1),(x2,y2),…,(xn,yn),设其回归方程为可以用哪些数量关系来刻画各样本点与回归直线的接近程度?abxy知识探究(四):回归方程思考3:对一组具有线性相关关系的样本数据:(x1,y1),(x2,y2),…,(xn,yn),设其回归方程为可以用哪些数量关系来刻画各样本点与回归直线的接近程度?abxy),(11yx),(22yx),(iiyxiiyyyx知识探究(四):回归方程思考3:对一组具有线性相关关系的样本数据:(x1,y1),(x2,y2),…,(xn,yn),设其回归方程为可以用哪些数量关系来刻画各样本点与回归直线的接近程度?abxy),(11yx),(22yx),(iiyxiiyyyx.)(||2abxyyyyyiiiiii其中,或可以用知识探究(四):回归方程思考4:为了从整体上反映n个样本数据与回归直线的接近程度,你认为选用哪个数量关系来刻画比较合适?),(11yx),(22yx),(iiyxiiyyyx知识探究(四):回归方程思考4:为了从整体上反映n个样本数据与回归直线的接近程度,你认为选用哪个数量关系来刻画比较合适?),(11yx),(22yx),(iiyxiiyyyx21ˆ()niiiQyy2221122()()()nnybxaybxaybxa知识探究(四):回归方程思考5:根据有关数学原理分析,当时,总体偏差为最小,这样就得到了回归方程,这种求回归方程的方法叫做最小二乘法.回归方程中,a,b的几何意义分别是什么?1122211()(),()nniiiiiinniiiixxyyxynxybaybxxxxnx21ˆ()niiiQyy知识探究(四):回归方程思考6:利用计算器或计算机可求得年龄和人体脂肪含量的样本数据的回归方程为,由此我们可以根据一个人个年龄预测其体内脂肪含量的百分比的回归值.若

1 / 54
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功