229第十章蛋白质的酶促降解和氨基酸代谢第一节蛋白质的酶促降解生物体内的蛋白质是经常处于动态的变化之中,一方面在不断地合成,另一方面又在不断地分解。例如,当种子萌发时,蛋白质发生强烈的水解,将胚乳或子叶中的储藏蛋白质分解,形成氨基酸和其他简单含氮化合物,供幼苗形成组织时用。在植物衰老时,蛋白质的分解亦很强烈,将营养器官的蛋白质分解成含氮化合物,转移到繁殖器官中,供幼胚及种子的形成之所需。蛋白质的分解对机体生命代谢的意义并不亚于蛋白质的合成。植物体为了进行正常的生长和发育,为了适应外界条件的变化,必须经常不断地形成具有不同结构与功能的各种蛋白质。因此,早期合成的蛋白质在完成其功能之后不可避免地要分解,其分解产物将作为合成新性质蛋白质的原料。蛋白质的分解是在蛋白(水解)酶催化下进行的,蛋白水解酶存在于植物所有的细胞与组织中。大量蛋白酶已被人们从植物种子、果实的生长器官中分离出来并进行了研究,如番木瓜汁液中的木瓜蛋白酶,菠萝茎和果实中的菠萝蛋白酶,花生种子中的花生仁蛋白酶,豌豆种子中的豌豆蛋白酶,小麦、大麦、燕麦籽粒中的相应蛋白酶。其中许多酶已制成结晶。蛋白水解酶可分为内肽酶(肽链内切酶)和端肽酶(肽链端解酶)两大类。(1)蛋白酶的种类和专一性蛋白酶即内肽酶(endopeptidase),水解蛋白质和多肽链内部的肽键,形成各种短肽。蛋白酶具有底物专一性,不能水解所有肽键,只能对特定H2NCHRnCONHCHCONR1R1'CHCONHCHR2CONCHCONHCHHHRR3CONRmCHCOOHH③④⑤⑥①②氨肽酶(芳、疏)羧肽酶胃蛋白酶胰凝乳蛋白酶胰蛋白酶枯草杆菌蛋白酶(碱)(疏)图9-1几种蛋白酶的专一性的肽键发生作用。如木瓜蛋白酶只能作用于由碱性氨基酸以及含脂肪侧链和芳香侧链的氨基酸所形成的肽键。几种蛋白水解酶的专一性见图9-1、表9-1。表9-1几种蛋白酶作用的专一性酶对R基团的要求作用部位230胃蛋白酶R1,R1′:芳香族氨基酸或其他疏水氨基酸(NH2端及COOH端)↑①胰凝乳蛋白酶R1′:芳香族及其他疏水氨基酸(COOH端)↑②胰蛋白酶R2:碱性氨基酸(COOH端)↑③枯草杆菌蛋白酶木瓜蛋白酶R3:疏水氨基酸(NH2端)碱性氨基酸以及含脂肪侧链和芳香侧链的氨基酸↑④羧肽酶ARm:芳香族氨基酸(COOH端)↓⑤羧基末端的肽键羧肽酶BRm:碱性氨基酸(COOH端)↓⑤羧基末端的肽键氨肽酶↓⑥氨基末端的肽键二肽酶要求相邻两个氨基酸上的-氨基和-羧基同时存在蛋白酶按基催化机理又可分为四类见表9-2。表9-2蛋白酶的种类编号名称作用特征例子3.4.213.4.223.4.233.4.24丝氨酸蛋白酶类硫醇蛋白酶类羧基(酸性)蛋白酶类金属蛋白酶类活性中心含组氨酸和丝氨酸活性中心含半胱氨酸最适pH值在5以下含有催化活性所必需的金属胰凝乳蛋白酶、胰蛋白酶、凝血酶木瓜蛋白酶、无花果蛋白酶、菠萝蛋白酶胃蛋白酶、凝乳酶枯草杆菌中性蛋白酶、脊椎动物胶原酶表9-2中所列的木瓜蛋白酶、菠萝蛋白酶及无花果蛋白酶的活性中心均含有半胱氨酸,因此能被HCN,H2S、半胱氨酸等还原剂所活化,而被H2O2等氧化剂及重金属离子所抑制。其余蛋白酶存在于大豆、菜豆、大麻、玉米、高粱的种子中。这些酶的性质与广泛分布的动物蛋白酶——胰蛋白酶和胃蛋白酶等有很多共同之处。(2)肽酶的种类和专一性端肽酶又称为肽酶(exopeptidase),从肽链的一端开始水解,将氨基酸一个一个地从多肽链上切下来。肽酶根据其作用性质不同可分为氨肽酶、羧肽酶和二肽酶。氨肽酶从肽链的氨基末端开始水解肽链;羧肽酶从肽链的羧基末端开始水解肽链(见表9-1、图9-1);二肽酶的底物为二肽,将二肽水解成单个氨基酸。肽酶又可分为六类,见表9-3。表9-3肽酶的种类编号名称作用特征反应3.4.113.4.13-氨酰肽水解酶类二肽水解酶类作用于肽链的氨基末端(N—末端),生成氨基酸水解二肽氨酰肽+H2O→氨基酸+肽二肽+H2O→2氨基酸2313.4.143.4.153.4.163.4.17二肽基肽水解酶类肽基二肽水解酶类丝氨酸羧肽酶类金属羧肽酶类作用于多肽链的氨基末端(N-末端),生成二肽作用于多肽链的羧基末端(C-末端),生成二肽作用于多肽链的羧基末端生成氨基酸作用于多肽链的羧基末端生成氨基酸二肽基多肽+H2O→二肽+多肽多肽基二肽+H2O→多肽+二肽肽基-L-氨基酸+H2O→肽+L-氨基酸肽基-L-氨基酸+H2O→肽+L-氨基酸3.蛋白质的酶促降解在内肽酶、羧肽酶、氨肽酶与二肽酶的共同作用下,蛋白质水解成蛋白眎、胨、多肽,最后完全分解成氨基酸,即蛋白质内肽酶眎、胨、内肽酶多肽端肽酶氨基酸这些氨基酸可以转移到蛋白质合成的地方用作合成新蛋白质的原料,也可以经脱氨作用形成氨和有机酸,或参加其他反应。第二节氨基酸的分解与转化氨基酸的分解反应包括脱氨基作用、脱羧作用与羟基化作用等。一、脱氨基作用高等植物的脱氨基作用在发芽的种子、幼龄植物及正发育的组织中最为强烈。脱氨基作用是氨基酸分解的最重要的一步,包括氧化脱氨基、非氧化脱氨基、转氨基、联合脱氨基、脱酰胺基等作用。(1)氧化脱氨基(oxidativedeamination)氧化脱氨基是高等植物最基本的脱氨基方式,氨基酸脱去-氨基后转变成相应的酮酸:禾本科、豆科作物幼苗及马铃薯块茎中,主要是二羧基氨基酸(天冬氨酸和谷氨酸)的氧化脱氨。如谷氨酸在谷氨酸脱氢酶的催化下,氧化脱氨生成-酮戊二酸:CHCOOHNH2RCCOOHOR++1/2O2NH3232COOHCHNH2CH2CH2+NADP+COOHCOCH2CH2COOH+NADPH+COOH谷氨酸α-酮戊二酸H2ONH3谷氨酸脱氢酶分布很广,在动植物、微生物中都存在,广泛存在于高等植物的种子、根、胚轴、叶片等组织中。(2)非氧化脱氨基(nonoxidativedeamination)非氧化脱氨基也包括多种方式。直接脱氨基是在氨基酸氨基裂解酶和辅助因子磷酸吡哆醛(PLP基)的催化下进行的:COOHCH2COOHCHCHCOOH+NH3COOHH2NCH氨基酸氨基袭解酶天冬氨酸延胡索酸天冬氨酸在天冬氨酸氨基裂解酶的催化下,裂解成延胡索酸和氨。脱水酶脱氨基脱水酶只作用于含有一个羟基的氨基酸,如L-丝氨酸在丝氨酸脱水酶(serinedehydratase)作用下发生脱氨:COOHCOOHH2NCHCH2OHCNH3CH3L-丝氨酸丙酮酸+H2OO+此酶以磷酸吡哆醛为辅酶,催化丝氨酸脱氨后发生分子内重排,生成丙酮酸。解氨酶可催化氨基酸的非氧化脱氨反应,如苯丙氨酸解氨酶(Phenylalanineammonialyase,PAL)催化苯丙氨酸和酪氨酸脱氨:CH2CHNH2COOHCHCHCOOH+NH3L-苯丙氨酸反式肉桂酸PAL该酶也催化酪氨酸脱氨基并形成对香豆酸反式异构体:233CH2CHNH2COOHCHCHCOOH+NH3OHOH酪氨酸反式香豆酸PAL在高等植物中存在催化苯丙氨酸和酪氨酸脱氨基形成氨和不饱和芳香酸的酶,如在许多植物中发现有苯丙氨酸解氨酶。(3)转氨基(脱氨)作用(transamination)一种-氨基酸的氨基可以转移到-酮酸上,而生成相应的-酮酸和-氨基酸,这种作用叫转氨基作用,也叫氨基移换作用。催化转氨基反应的酶叫转氨酶,其辅酶为磷酸吡哆醛或磷酸吡哆胺。转氨基作用的简式如下:HCCOOH+R1R1CCOOHR1CCOOH+R2CCOOHHNH2NH2OO转氨酶α-氨基酸α-酮酸α-酮酸α-氨基酸转氨酶的辅酶为磷酸吡哆醛或磷酸吡哆胺,它们起氨基传递体的作用,反应过程如下:CR1HNH2COOHCR1COOHONCHOCH2OPHOH3CNCH2CH2OPHOH3CNH2CR2HNH2COOHCR2COOHO-氨基酸1ααα-氨基酸2-酮酸1-酮酸2磷酸吡哆胺磷酸吡哆醛α转氨酶的种类很多,广泛分布于动植物及微生物中,因此氨基酸的转氨基作用在生物体内是极为普遍的。转氨基作用是氨基酸脱氨的一种主要方式,在氨基酸代谢中占有重要的地位。实验证明,除赖氨酸、苏氨酸外,其余-氨基酸都可参与转氨基作用,并各有其特异的转氨酶。(4)联合脱氨基作用生物体内L-氨基酸氧化酶活力不高,而L-谷氨酸脱氢酶的活力很高,转氨酶又普遍存在,因此一般认为L-氨基酸往往不是直接氧化脱去氨基,而是234先与-酮戊二酸经转氨作用变为相应的酮酸与谷氨酸,谷氨酸再经谷氨酸脱氢酶作用重新变成-酮戊二酸,同时放出氨。这种脱氨基作用是转氨基作用和氧化脱氨基作用配合进行的,所以叫联合脱氨基作用。其反应式如图9-2。COOHCH2CH2CCOOHCOOHCH2CH2CHNH2COOH谷氨酸NH3RCHCOOHNH2ORCOOHCOα-氨基酸α-酮酸转氨酶α-酮戊二酸L-谷氨酸脱氢酶+NADH2(NADPH2)NAD+(NADP+)图9-2联合脱氨基反应示意图(5)脱酰胺基作用(deamidation)酰胺也可以在脱酰胺酶(deamidase)作用下脱去酰胺基,而生成氨:CONH2CH2CH2CHNH2COOH+H2O谷氨酰氨酶COOHCH2CH2CHNH2COOH谷氨酰胺谷氨酸+NH3二、脱羧基作用CONH2CH2CHNH2COOH+H2O天冬酰胺酶COOHCH2CHNH2COOH天冬酰胺天冬氨酸+NH3235(1)直接脱羧基作用氨基酸在脱羧酶(decarboxylase)催化下脱去羧基生成胺。通式如下:氨基酸脱羧普遍存在于动植物及微生物组织中,其辅酶为磷酸吡哆醛。二羧基氨基酸主要在α-位上脱羧,所生成的产物不是胺,而是另一种新的氨基酸。天冬氨酸脱羧后生成β-丙氨酸:HOOCCHCH2COOHCO2CH2COOHNH2NH2天冬氨酸β-丙氨酸CH2谷氨酸脱羧后生成γ-氨基丁酸:HOOCCHCH2COOHCO2CH2CH2COOHNH2NH2CH2谷氨酸γ-氨基丁酸CH2γ-氨基丁酸与-酮戊二酸进行转氨反应,生成谷氨酸和琥珀酸半醛,后者被氧化成琥珀酸后进入三羧酸循环:CH2NH2CH2CH2COOHOHCCH2CH2COOHHOOCCH2CH2COOHγ-氨基丁酸琥珀酸半醛琥珀酸色氨酸在脱氨和脱羧后转变成植物生长素(吲哚乙酸):NNNCH2CHCOOHNH2NH3CH2COCOOHCH2CHONHHHH色氨酸吲哚丙酮酸吲哚乙醛吲哚乙酸CH2COOH丝氨酸脱羧生成乙醇胺;乙醇胺经甲基化作用生成胆碱:CO2CH2CHCOOHNH2CH2CH2CH2CH2NH2OHOHN+(CH3)3OH丝氨酸乙醇胺胆碱3(CH3)CHCOOHNH2RCH2NH2RCO2+236乙醇胺和胆碱分别是脑磷脂和卵磷脂的成分。某些胺的氨基酸前体见表9-4。表9-4某些胺的氨基酸前体氨基酸胺结构式丝氨酸缬氨酸异亮氨酸甲硫氨酸赖氨酸鸟氨酸精氨酸苯丙氨酸酪氨酸色氨酸乙醇胺丁胺异戊胺甲硫基丙胺尸胺腐胺精胺亚精胺苯乙胺酪胺色胺CH2—CH2NH2∣OHCH3CHCH2NH2CH3CH3CHCH2NH2CH3CH2CH2—CH2—CH2NH2∣SCH3CH2—(CH2)3—CH2NH2∣NH2CH2—(CH2)2—CH2NH2∣NH2H2N(CH2)3NH(CH2)4NH(CH2)3NH2H2N(CH2)4NH(CH2)3NH2CH2NH2CH2CH2NH2CH2HONHCH2NH2CH2这些胺类在植物体内进一步转化所形成的产物都具有一定的生理作用。胺可经氨氧化酶氧化成醛和氨;醛经脱氢酶作用氧化成脂肪酸;脂肪酸经-氧化生成乙酰辅酶A而进入三羧酸循环彻底氧化:RCH2NH2+O2+H2O+1/2O2RCHORCOOHCO2+H2OTCA环β-氧化胺氧化酶醛脱氢酶胺醛酸(2)羟化脱羟基作用(hydroxylation)酪氨酸在酪氨酸酶(tyrosinase)催化下发生羟化而生成3,4-二羟苯丙氨酸,简称多巴,后者可脱羧生成3,4-二羟苯乙胺,简称多巴胺:237CH2CHCOOHNH2CH2CHCOOHNH2CH2CH2HOHOOHOH