第七章光电传感器本次课主要讲述内容:1、光电传感器原理及类型2、光电效应3、主要光电器件及其特点一、光电传感器的原理及类型1、原理光电传感器通常是指能敏感到由紫外线到红外线光的光能量,并能将光能转化成电信号的器件,原理如下图。2、光电传感器的分类按光电元件输出量性质可分二类,即模拟式光电传感器和脉冲(开关)式光电传感器。模拟式光电传感器是将被测量转换成连续变化的光电流,它与被测量间呈单值关系。模拟式光电传感器按被测量(检测目标物体)方法可分为:透射(吸收)式、漫反射式、遮光式(光束阻档)三大类。一、光电传感器的原理及类型(1)透射式是指被测物体放在光路中,恒光源发出的光能量穿过被测物,部份被吸收后,透射光投射到光电元件上,因此又称之为吸收式。2、光电传感器的分类一、光电传感器的原理及类型漫反射式是指恒光源发出的光投射到被测物上,再从被测物体表面反射后投射到光电元件上2、光电传感器的分类一、光电传感器的原理及类型遮光式是指当光源发出的光通量经被测物光遮其中一部份,使投射到光电元件上的光通量改变,改变的程度与被测物体在光路位置有关。2、光电传感器的分类一、光电传感器的原理及类型二、光电效应(10.28)1、定义:对不同频率ν的光,其光子能量E=hν是不相同的,光波频率ν越高,光子能量越大。用光照射某一物体,可以看作是一连串能量为hν的光子轰击在这个物体上,此时光子能量就传递给电子,并且是一个光子的全部能量一次性地被一个电子所吸收,电子得到光子传递的能量后其状态就会发生变化,从而使受光照射的物体产生相应的电效应,这种物理现象称为光电效应。2、光电效应的分类:1)在光线作用下能使电子逸出物体表面的现象称为外光电效应,基于外光电效应的光电元件有光电管、光电倍增管等。2)在光线作用下能使物体的电阻率改变的现象称为内光电效应。基于内光电效应的光电元件有光敏电阻、光敏晶体管等。3)在光线作用下,物体产生一定方向电动势的现象称为光生伏特效应,基于光生伏特效应的光电元件有光电池等。二、光电效应三、主要光电器件及其特点结构原理光电管是利用外光电效应制成的光电元件。如下图所示:半圆筒形金属片制成的阴极K和位于阴极轴心的阳极A封装在抽成真空的玻壳内,当入射光照射在阴极上时,单个光子就把它的全部能量传递给阴极材料中的一个自由电子,从而使自由电子的能量增加hν。当电子能量大于阴极材料的逸出功A时,它就逸出,形成电子发射。这种电子称为光电子。AKIΦU0RLE光电管由于真空光电管的灵敏度低,因此人们研制了具有放大光电流能力的光电倍增管。光电倍增管主要由光阴极K、倍增极D和阳极A组成,并根据要求采用不同性能的玻璃壳进行真空封装。K三、主要光电器件及其特点光电倍增管三、主要光电器件及其特点当有光子入射到光阴极K上,只要光子的能量大于光阴极材料的脱出功,就会有电子从阴极的表面逸出而成为光电子。在K和D1之间的电场作用下,光电子被加速后轰击第一倍增极D1,从而使D1产生二次电子发射,每一个电子的轰击约可产生3~5个二次电子,这样就实现了电子数目的放大。D1产生的二次电子被D2和D1之间的电场加速后轰击D2,……。这样的过程一直持续到最后一级倍增极Dn,每经过一级倍增极,电子数目便被放大一次,倍增极的数目有8~13个,最后一级倍增极Dn发射的二次电子被阳极A收集。若倍增电极有n级,各级的倍增率为б,则光电倍增管的倍增率可以认为是бn,因此,光电倍增管有极高的灵敏度。光电倍增管1.工作原理光敏电阻是基于内光电效应的光电元件,当内光电效应发生时,固体材料吸收的能量使部分价带电子迁移到导带,同时在价带中留下空穴,这样由于材料中载流子个数的增加,材料电导率增加。三、主要光电器件及其特点光敏电阻暗电流(越小越好)当光敏电阻受到光照时,阻值减小。2.结构光敏电阻是薄膜元件,它是由在陶瓷底衬上覆一层光电半导体材料(金属硫化物、硒化物和锑化物)。目前生产的光敏电阻主要是硫化镉。三、主要光电器件及其特点光敏电阻基本原理其结构如下图所示,只是它的PN结装在管壳顶部,光线通过透镜制成的窗口,可以集中照射在PN结上,有光照时反向导通。μAEV-+IΦ结构示意图和图形符号基本电路a)b)EU0ceIcRLNNPa)结构示意图b)基本电路三、主要光电器件及其特点光敏二极管和三极管三、主要光电器件及其特点光敏二极管和三极管μAEV-+IΦ结构示意图和图形符号基本电路a)b)EU0ceIcRLNNPa)结构示意图b)基本电路1.工作原理硅光电池的工作原理是光生伏特效应。当光照射在硅光电池的PN结区时,会在半导体中激发出光生电子一空穴对。PN结两边的光生电子一空穴对,在内电场的作用下,属于多数载流子的不能穿越阻挡层,而少数载流子却能穿越阻挡层。结果,P区的光生电子进入N区,N区的光生空穴进入p区,使每个区中的光生电子一空穴对分割开来。光生电子在N区的集结使N区带负电,光生空穴在p区的集结使P区带正电。P区和N区之间产生光生电动势。当硅光电池接入负载后,光电流从P区经负载流至N区,负载中即得到功率输出。三、主要光电器件及其特点光电池本章学习几种常用数字式位置传感器的结构、原理,如角编码器、光栅传感器、磁栅传感器、容栅传感器等,并讨论他们在直线位移和角位移中测量、控制的应用。补充:数字式位置传感器第一节位置测量的方式一、直接测量和间接测量位置传感器有直线式和旋转式两大类。若位置传感器所测量的对象就是被测量本身,即用直线式传感器测直线位移,用旋转式传感器测角位移,则该测量方式为直接测量。例如直接用于直线位移测量的直线光栅和长磁栅等;直接用于角度测量的角编码器、圆光栅、圆磁栅等。若旋转式位置传感器测量的回转运动只是中间值,再由它推算出与之关联的移动部件的直线位移,则该测量方式为间接测量。1.直接测量直接测量的误差较小。图为利用光栅传感器测量数控机床工作台位移量的现场照片。工作台光栅工作台运动方向2.间接测量在间接测量中,多使用旋转式位置传感器。测量到的回转运动参数仅仅是中间值,但可由这中间值再推算出与之关联的移动部件的直线位移间接测量须使用丝杠-螺母、齿轮-齿条等传动机构。工作台丝杠编码器进给电机θx传动机构滚珠丝杠螺母副、齿轮-齿条副等传动机构能够将旋转运动转换成直线运动。但应设法消除传导过程产生的间隙误差。齿距齿条齿轮θx滚珠丝杠螺母副滚珠丝杠螺母副能够减小传动磨檫力,延长使用寿命,减小间隙误差。螺母丝杠xθ传动分析设:螺距t=4mm,丝杠在4s时间里转动了10圈,求:丝杠的平均转速n(r/min)及螺母移动了多少毫米?螺母的平均速度v又为多少?螺母丝杠螺距x=?N=10圈二、增量式和绝对式测量在增量式测量中,移动部件每移动一个基本长度单位,位置传感器便发出一个测量信号,此信号通常是脉冲形式。这样,一个脉冲所代表的基本长度单位就是分辨力,对脉冲计数,便可得到位移量。绝对式测量的特点是:每一被测点都有一个对应的编码,常以二进制数据形式来表示。绝对式测量即使断电之后再重新上电,也能读出当前位置的数据。典型的绝对式位置传感器有绝对式角编码器。增量式测量得到的脉冲波形第二节数字式角编码器信号航空插头(参考德国沃申道夫公司资料)其他角编码器外形其他角编码器外形(续)拉线式角编码器利用线轮,能将直线运动转换成旋转运动。其他角编码器外形(参考德国图尔克传感与自动化技术专业公司)一、绝对式编码器绝对式码盘与增量式码盘有何区别?10码道光电绝对式码盘绝对式编码器按照角度直接进行编码,可直接把被测转角用数字代码表示出来。根据内部结构和检测方式有接触式、光电式等形式。透光区不透光区零位标志绝对式接触式编码器演示4个电刷4位二进制码盘+5V输入公共码道最小分辨角度为α=360°/2n2.绝对式光电编码器a)光电码盘的平面结构(8码道)b)光电码盘与光源、光敏元件的对应关系(4码道)高位低位绝对式光电编码器的分辨力及分辨率绝对式光电编码器的测量精度取决于它所能分辨的最小角度,而这与码盘上的码道数n有关,即最小能分辨的角度及分辨率为:α=360°/2n分辨率=1/2n增量式光电编码器的分辨力及分辨率增量式光电编码器的测量精度取决于它所能分辨的最小角度,而这与码盘圆周上的狭缝条纹数n有关,即最小能分辨的角度及分辨率为:36011-3n111-4n分辨率二、增量式编码器转轴盘码及狭缝光敏元件光栏板及辨向用的A、B狭缝LEDABC零位标志ABC光电编码器的输出波形为了判断码盘旋转的方向,在上图的光栏板上的两个狭缝距离是码盘上的两个狭缝距离的(m+1/4)倍,m为正整数,并设置了两组光敏元件A、B,有时又称为sin、cos元件。DG5DG1ACARBUo1Uo2&1&DG4&1DG2DG3辨向信号和零标志光电编码器的光栏板上有A组与B组两组狭缝,彼此错开1/4节距,两组狭缝相对应的光敏元件所产生的信号A、B彼此相差90相位,用于辩向。当编码正转时,A信号超前B信号90;当码盘反转时,B信号超前A信号90。(请画出反转时信号B的波形)在上一页图的码盘里圈,还有一根狭缝C,每转能产生一个脉冲,该脉冲信号又称“一转信号”或零标志脉冲,作为测量的起始基准。DG5DG1ACARBUo1Uo2&1&DG4&1DG2DG3ABABA01U02UABABA01U02U光电编码器的输出波形光电编码器的输出波形鉴相双向计数电路3片74LS193A图中为:三、角编码器的应用角编码器除了能直接测量角位移或间接测量直线位移外,可用于数字测速、工位编码、伺服电机控制等。编码器在定位加工中的应用1—绝对式编码器2—电动机3—转轴4—转盘5—工件6—刀具设该增量式光电编码器的参数为1024p/r,大、小皮带轮的传动比为5,若希望当加工好元件1后紧接着加工元件8,则电动机转动了多少分之几圈?应等待编码器给出多少脉冲数时,电动机停转?数控加工中心编码器在数控加工中心的刀库选刀控制中的应用旋转刀库被加工工件刀具角编码器的输出为当前刀具号角编码器与旋转刀库连接用不同的刀具加工复杂的工件编码器在伺服电机中的应用利用编码器测量伺服电机的转速、转角,并通过伺服控制系统控制其各种运行参数。•转速测量•转子磁极位置测量•角位移测量第三节光栅传感器一、光栅的类型和结构计量光栅可分为透射式光栅和反射式光栅两大类,均由光源、光栅副、光敏元件三大部分组成。计量光栅按形状又可分为长光栅和圆光栅。尺身尺身安装孔反射式扫描头(与移动部件固定)扫描头安装孔可移动电缆光栅的外形及结构防尘保护罩的内部为长磁栅扫描头(与移动部件固定)光栅尺可移动电缆光栅的外形及结构(续)反射式光栅透射式光栅手动演示莫尔条纹演示莫尔条纹的光学放大作用在透射式直线光栅中,把主光栅与指示光栅的刻线面相对叠合在一起,中间留有很小的间隙,并使两者的栅线保持很小的夹角θ。在两光栅的刻线重合处,光从缝隙透过,形成亮带;在两光栅刻线的错开处,由于相互挡光作用而形成暗带。光栅的刻线宽度W莫尔条纹的宽度LL≈W/θ,(θ为主光栅和指示光栅刻线的夹角,弧度)莫尔条纹光学放大作用举例有一直线光栅,每毫米刻线数为50,主光栅与指示光栅的夹角=1.8,则:分辨力=栅距W=1mm/50=0.02mm=20m(由于栅距很小,因此无法观察光强的变化)莫尔条纹的宽度是栅距的32倍:L≈W/θ=0.02mm/(1.8*3.14/180)=0.02mm/0.0314=0.637mm由于较大,因此可以用小面积的光电池“观察”莫尔条纹光强的变化。光栅的输出信号(TTL)余弦信号(超前)正弦信号零位信号光栅的输出信号(TTL)细分技术随着对测量精度要求的提高,以栅距为单位已不能满足要求,需要采取适当的措施对莫尔条纹进行细分。所谓细分就是在莫尔条纹信号变化一个周期内,发出若干个脉冲,以减少脉冲当量。如一个周期内发出n个脉冲,则可使测量精度提高n倍,而每个脉冲相当于原来栅距的1/n。由于细分后计数脉冲频率提高了n倍,因此也称n倍频。光栅的输出信号(TTL)两种细分方法:其一、直接细分。在相差1/4莫尔