1方案设计问题(2012北海,23,8分)1.某班有学生55人,其中男生与女生的人数之比为6:5。(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上。请问男、女生人数有几种选择方案?解:(1)设男生有6x人,则女生有5x人。1分依题意得:6x+5x=552分∴x=5∴6x=30,5x=25………3‘答:该班男生有30人,女生有25人。4分(2)设选出男生y人,则选出的女生为(20-y)人。5分由题意得:2027yyy6分解之得:7≤y<9∴y的整数解为:7、8………..……..7分当y=7时,20-y=13当y=8时,20-y=12答:有两种方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12人。8分2.(2012年广西玉林市,24,10分)一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两辆车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.解:(1)设甲车单独完成任务需要x天,乙单独完成需要y天,由题意可得:1511110xyyx,解得:3015yx即甲车单独完成需要15天,乙车单独完成需要30天;(2)设甲车租金为a,乙车租金为b,则根据两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元可得:1500650001010baba,解得:25004000ba.①租甲乙两车需要费用为:65000元;②单独租甲车的费用为:15×4000=60000元;2③单独租乙车需要的费用为:30×2500=75000元;综上可得,单独租甲车租金最少.3.(2012黑龙江省绥化市,27,10分)在实施“中小学校舍安全工程”之际,某县计划对A、B两类学校的校舍进行改造.根据预测,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.⑴改造一所A类学校和一所B类学校的校舍所需资金分别是多少万元?⑵该县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所.解:(1)等量关系为:①改造一所A类学校和三所B类学校的校舍共需资金480万元;②改造三所A类学校和一所B类学校的校舍共需资金400万元;设改造一所A类学校的校舍需资金x万元,改造一所B类学校的校舍所需资金y万元,则34803400xyxy,解得90130xy答:改造一所A类学校的校舍需资金90万元,改造一所B类学校的校舍所需资金130万元.(2)不等关系为:①地方财政投资A类学校的总钱数+地方财政投资B类学校的总钱数≥210;②国家财政投资A类学校的总钱数+国家财政投资B类学校的总钱数≤770.设A类学校应该有a所,则B类学校有(8-a)所.则203082109020130308770aaaa,解得31aa∴1≤a≤3,即a=1,2,3.答:有3种改造方案.方案一:A类学校有1所,B类学校有7所;方案二:A类学校有2所,B类学校有6所;方案三:A类学校有3所,B类学校有5所.⑴改造一所A类学校和一所B类学校的校舍所需资金分别是90万元、130万元;⑵共有三种方案.方案一:A类学校1所,B类学校7所;方案二:A类学校2所,B类学校6所;方案三:A类学校3所,B类学校5所.4、为表彰在“缔造完美教室”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元.(1)每个文具盒、每支钢笔个多少元?(2)时逢“五一”,商店举行“优惠促销”活动,具体办法如下:文具盒“九折”优惠;钢笔10支以上超出部3分“八折”优惠.若买x个文具盒需要1y元,买x支钢笔需要2y元;求1y、2y关于x的函数关系式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.解(1)设每个文具盒x元,每支钢笔y元,可列方程组得1617410025yxyx,解之得1514yx答:每个文具盒14元,每支钢笔15元.……………………………………………………..4分(2)由题意知,y1关于x的函数关系式为y1=14×90%x,即y1=12.6x.由题意知,买钢笔10以下(含10支)没有优惠,故此时的函数关系式为y2=15x.当买10支以上时,超出部分有优惠,故此时函数关系式为y2=15×10+15×80%(x-10)即y2=12x+30.……………………………………………………..7分(3)当y1y2即12.6x12x+30时,解得x50;当y1=y2即12.6x=12x+30时,解得x=50;当y1y2即12.6x12x+30时,解得x50.综上所述,当购买奖品超过10件但少于50件时,买文具盒省钱;当购买奖品超过50件时,买文具盒和买钢笔钱数相等;当购买奖品超过50件时,买钢笔省钱..……………………………………………………..10分(1)答:每个文具盒14元,每支钢笔15元.(2)y1=12.6x;y2=12x+30.(3)当购买奖品超过10件但少于50件时,买文具盒省钱;当购买奖品超过50件时,买文具盒和买钢笔钱数相等;当购买奖品超过50件时,买钢笔省钱.5.(2012四川省南充市,20,8分)学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车1辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少..要有一名教师,且总组成费用不超过...2300元,求最省钱的租车方案.解:(1)设租用一辆大车的租车费是x元,租用一辆小车的租车费是y元,依题意,得:+2=10002+=1100xyxy,解之,得:=400=300xy.答:大、小车每辆的租车费分别是400元和300元.(2)240名师生都有座位,租车总辆数≥6;每辆车上至少要有一名教师,租车总辆数≤6.故租车总数事故6辆,设大车辆数是x辆,则租小车(6-x)辆.得:445+30(6-)240400+300(6-)2300xxxx,解之,得:4≤x≤5.∵x是正整数∴x=4或5于是又两种租车方案,方案1:大车4辆小车2辆总租车费用2200元,方案2:大车5辆小车1辆总租车费用2300元,可见最省钱的是方案1.18.(2012湖南益阳,18,8分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省....的方案,并求出该方案所需费用.解:⑴设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得:…1分80x+60(17-x)=1220……………………………………………2分解得x=10∴17-x=7…………………………3分答:购进A种树苗10棵,B种树苗7棵………………………………………4分⑵设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得:17-xx解得x218……………………………………………6分购进A、B两种树苗所需费用为80x+60(17-x)=20x+1020则费用最省需x取最小整数9,此时17-x=8这时所需费用为20×9+1020=1200(元).答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1200元.6.(2012四川省资阳市,22,8分)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)(3分)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)(5分)求出课桌凳和办公桌椅的购买方案.(1)设一套课桌凳和一套办公桌椅的价格分别为x元、y元,得801042000yxxy……2分解得120200xy…………3分∴一套课桌凳和一套办公桌椅的价格分别为120元、200元(2)设购买办公桌椅m套,则购买课桌凳20m套,由题意有16000800001202020024000mm………………………………………5分解得,7821241313m………6分∵m为整数,∴m=22、23、24,有三种购买方案:……7分5方案一方案二方案三课桌凳(套)440460480办公桌椅(套)2223247.(2012贵州铜仁,24,12分)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?【分析】(1)此问题等量关系式为:8件A纪念品的钱数+3件B纪念品的钱数=950;5件A纪念品的钱数+6件B纪念品的钱数=800;然后根据关系式即可列出方程求解1.此问题关系式为:购买100件A和B资金不少于7500元,但不超过7650元,然后根据关系式即可列出不等式组,解出购进A或B的件数,即可得到商店有几种进货方案2.可分别计算出各种方案的利润,然后比较大小即可。【解析】(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组8006595038baba解方程组得50100ba∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100—x)个∴7650)100(501007500)100(50100xxxx解得50≤x≤53∵x为正整数,∴共有4种进货方案(3)因为B种纪念品利润较高,故B种数量越多总利润越高,因此选择购A种50件,B种50件.总利润=250030502050(元)∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元8.(2012四川内江,19,9分)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道两侧,搭配每个造型所需花卉数量的情况如下表所示:6结合上述信息,解答下列问题:(1)符合题意的搭配方案有哪几种(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用哪种方案成本最低?最低成本为多少元?【解析】(1)4200盆甲种花卉和3090盆乙种花卉最多全部用完,不可能用超,由此得出: