3.1回归分析的基本思想及其初步应用(三)高二数学选修2-3第三章统计案例1、线性回归模型:y=bx+a+e,(3)其中a和b为模型的未知参数,e称为随机误差。y=bx+a+e,E(e)=0,D(e)=(4)2.2、数据点和它在回归直线上相应位置的差异是随机误差的效应,称为残差。)iiyy(iiieyy=一、复习回顾在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用回归模型来拟合数据。3、残差分析与残差图然后,我们可以通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析。12,,,neee我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。4残差图的制作及作用坐标纵轴为残差变量,横轴可以有不同的选择。横轴为编号,可以考察残差与编号次序之间的关系,常用于调查数据错误。横轴为解释变量,可以考察残差与解释变量的关系,常用于研究模型是否有改进的余地。若模型选择的正确,残差图中的点应该分布在以横轴为中心的带形区域。382.0883.2627.6137.1618.4419.2627.2373.6eˆ5943616454505748kg/170155165175170157165165cm/87654321残差体重身高编号-8-6-4-2024680123456789编号残差,纵坐标为残差横坐标为样本编号残差图-8-6-4-2024680123456789编号残差,,.16,,,;,.残差点比较均匀地落在水平的带状区域的宽度越窄说明模型拟合精度越高回归方程的预报精确度越高第和第个样本点的残差比较大如果数据采集有错误就予以纠正然后再重新利用线性回归模型拟合数据如果数据采集没有错误则需要寻找其他的原因5还可以用相关指数R2来刻画回归的效果,其计算公式是:222112211()()1()()nniiiiinniiiiyyyyRyyyyR21,说明回归方程拟合的越好;R20,说明回归方程拟合的越差。案例2一只红铃虫的产卵数y和温度x有关。现收集了7组观测数据列于表中:(1)试建立产卵数y与温度x之间的回归方程;并预测温度为28oC时产卵数目。(2)你所建立的模型中温度在多大程度上解释了产卵数的变化?温度xoC21232527293235产卵数y/个711212466115325二、非线性回归问题假设线性回归方程为:ŷ=bx+a选模型由计算器得:线性回归方程为y=19.87x-463.73相关指数R2≈0.7464估计参数解:选取气温为解释变量x,产卵数为预报变量y。选变量所以,一次函数模型中温度解释了74.64%的产卵数变化。探索新知画散点图050100150200250300350036912151821242730333639方案1分析和预测当x=28时,y=19.87×28-463.73≈93一元线性模型奇怪?9366?模型不好?y=bx2+a变换y=bt+a非线性关系线性关系方案2问题1选用y=bx2+a,还是y=bx2+cx+a?问题3-200-1000100200300400-40-30-20-10010203040产卵数气温问题2如何求a、b?合作探究t=x2二次函数模型方案2解答平方变换:令t=x2,产卵数y和温度x之间二次函数模型y=bx2+a就转化为产卵数y和温度的平方t之间线性回归模型y=bt+a温度21232527293235温度的平方t44152962572984110241225产卵数y/个711212466115325作散点图,并由计算器得:y和t之间的线性回归方程为y=0.367t-202.543,相关指数R2=0.802将t=x2代入线性回归方程得:y=0.367x2-202.543当x=28时,y=0.367×282-202.54≈85,且R2=0.802,所以,二次函数模型中温度解释了80.2%的产卵数变化。产卵数y/个0501001502002503003500150300450600750900105012001350t问题2变换y=bx+a非线性关系线性关系21cxyce问题1如何选取指数函数的底?-50050100150200250300350400450-10-50510152025303540产卵数气温指数函数模型方案3合作探究对数方案3解答温度xoC21232527293235z=lny1.9462.3983.0453.1784.1904.7455.784产卵数y/个71121246611532500.40.81.21.622.42.8036912151821242730333639xz当x=28oC时,y≈44,指数回归模型中温度解释了98.5%的产卵数的变化由计算器得:z关于x的线性回归方程为0.272x-3.849ˆ.ye22111221lnln()lnlnlnlnlncxcxycececcxecxc对数变换:在中两边取常用对数得21cxyce令,则就转换为z=bx+a.12ln,ln,zyacbc21cxyceˆz=0.272x-3.849,相关指数R2=0.985最好的模型是哪个?-200-1000100200300400-40-30-20-10010203040产卵数气温-50050100150200250300350400450-10-50510152025303540产卵数气温-10001002003004000510152025303540产卵数线性模型二次函数模型指数函数模型比一比函数模型相关指数R2线性回归模型0.7464二次函数模型0.80指数函数模型0.98最好的模型是哪个?回归分析(二)(1)0.2723.849(2)2ˆˆy,y0.367202.543.xex则回归方程的残差计算公式分别为:由计算可得:(1)(1)0.2723.849(2)(2)2ˆˆ,1,2,...,7;ˆˆ0.367202.543,1,2,...,7.xiiiiiiiieyyyeieyyyxix21232527293235y7112124661153250.557-0.1011.875-8.9509.230-13.38134.67547.69619.400-5.832-41.000-40.104-58.26577.968(1)ˆe(2)ˆee1-20-10010203040010203040e1e2-80-60-40-20020406080100010203040e2案例2:红铃虫的产卵数与温度(残差分析)指数模型二次模型残差平方和:相关系数R2:1550.53815448.4310.980.80因此模型(1)的拟合效果远远优于模型(2)。总结1122(,),(,),...,(,),nnxyxyxy对于给定的样本点两个含有未知参数的模型:(1)(2)(,)(,),yfxaygxb和其中a和b都是未知参数。拟合效果比较的步骤为:(1)分别建立对应于两个模型的回归方程与其中和分别是参数a和b的估计值;(2)分别计算两个回归方程的残差平方和与(3)若则的效果比的好;反之,的效果不如的好。(1)ˆˆ(,)yfxa(2)ˆˆ(,),ygxbˆaˆb(1)(1)21ˆˆ()niiiQyy(2)(2)21ˆˆ();niiiQyy(1)(2)ˆˆ,QQ(1)ˆˆ(,)yfxa(2)ˆˆ(,)ygxb(2)ˆˆ(,)ygxb(1)ˆˆ(,)yfxa练习:为了研究某种细菌随时间x变化,繁殖的个数,收集数据如下:天数x/天123456繁殖个数y/个612254995190(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图;(2)描述解释变量与预报变量之间的关系;(3)计算残差、相关指数R2.天数繁殖个数解:(1)散点图如右所示(2)由散点图看出样本点分布在一条指数函数y=的周围,于是令Z=lny,则2Cx1eCx123456Z1.792.483.223.894.555.25由计数器算得则有ˆZ=0.69X1.1120.69x1.112ˆy=eˆy6.0612.0924.0948.0495.77190.9y612254995190n22ii=11ˆˆe()3.1643,niiiyyn222i1i=1()yny25553.3.niiyy(3)即解释变量天数对预报变量繁殖细菌得个数解释了99.99%.23.164310.9999.25553.3R练习假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料。使用年限x23456维修费用y2.23.85.56.57.0若由资料知,y对x呈线性相关关系。试求:(1)线性回归方程的回归系数;(2)求残差平方和;(3)求相关系数;(4)估计使用年限为10年时,维修费用是多少?ˆˆˆybxaˆˆab、2R解:(1)由已知数据制成表格。12345合计23456202.23.85.56.57.0254.411.422.032.542.0112.34916253690ixiyiixy2ix4;5;xy5521190;112.3.iiiiixxyiˆˆ1.23,0.08.baˆ1.230.08.yx所以有