09年理工大作业材料力学

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

5.5当力P直接作用在跨长l=6m的梁AB的中点时,梁内的最大正应力σ超过了许用值30%。为了消除这种过载现象,配置了如图所示的辅助梁CD,试求此辅助梁应有的跨长a。2Pl412alP41zmaxmaxWMPl41301alP41%l133a5.6如图5.29所示某施工支架上钢梁的计算简图。若钢梁是由两个槽钢组成,材料为3号钢,其许用应力[σ]=170MPa,[τ]=100MPa。问在不计梁的自重时应选用多大的槽钢?73.02.11zmaxmaxWMMPa1703zcm05.24MPa170273.02.11W号槽钢选825.9已知图示铸铁简支梁的E=120GPa,许用拉应力[σt]=30MPa,许用压应力[σc]=90MPa。试求:(1)许可荷载P。(2)在许可荷载作用下,梁下边缘的总伸长量。2P4144222222zm1055.210050200502001212520050200501211505010050100121IzmaxmaxtI125MMPa30tkN4.122PzmaxmaxCI175MMPa90CkN262PkN4.122P5.9已知图示铸铁简支梁的E=120GPa,许用拉应力[σt]=30MPa,许用压应力[σc]=90MPa。试求:(1)许可荷载P。(2)在许可荷载作用下,梁下边缘的总伸长量。2P41kN4.122PztEI125xMEx2kN4.122xMdxEI125xMdxdzmm25.010z10dxEI125xM2dx25.12一铸铁梁如图所示。已知材料的抗拉强度极限(σb)t=150MPa,抗压强度极限(σb)c=630MPa。试求此梁的安全系数。kNm8kNm1253601402001023060140100200102yc2323z2360140601401214720010200101212I47mm109.2z1cmaxcIyMC截面:533109.2101471012MPa8.60z2cmaxtIyM533109.210531012MPa9.215.12一铸铁梁如图所示。已知材料的抗拉强度极限(σb)t=150MPa,抗压强度极限(σb)c=630MPa。试求此梁的安全系数。kNm8kNm1253601402001023060140100200102yc2323z2360140601401214720010200101212I47mm109.2z2BmaxcIyMB截面:533109.21053108MPa6.14z1BmaxtIyM533109.210147108MPa5.405.12一铸铁梁如图所示。已知材料的抗拉强度极限(σb)t=150MPa,抗压强度极限(σb)c=630MPa。试求此梁的安全系数。z2BmaxcIyMB截面:533109.21053108MPa6.14z1BmaxtIyM533109.210147108MPa5.40z1cmaxcIyMC截面:533109.2101471012MPa8.60z2cmaxtIyM533109.210531012MPa9.215.40150nmaxttbt7.38.60630nmaxccbc36.1040kN040kN40kNmmaxmaxzM170MPaW3zW235.29cm3zNo.20a,W237cm选用*3Smaxz23zFS401033.2MPaId17.2107106.4试分别用积分法和叠加法求图示变截面梁的最大挠度和转角。6.5用叠加法求图示各梁截面A的挠度和截面B的转角。设EI=常量。3A1lF2y3EI2A1B1lP22EI2A2lPl2y2EIB2PllEIAA1A2yyyBB1B2xdx22Aqdxxdy3l4x48EIll2222AA00qdxxydy3l4x48EIBqdxlxxlxd6lEIl2B0qdxlxxlx6lEI0.50.50.5q0.5q6.6试按叠加法计算图示梁的θC和yC。设EI=常量。C1yC12qaC2yC26.11试求图所示各超静定梁的支座反力,并作Q、M图。BFB0BF12BP2af9a2a6EI23BBF3af3EIB14FP27BF13P2714Pa274Pa9BFBFB012BM2af2EI23BBF2af3EIB3MF4a3M4aM1M20601005075cos60262.5MPa06010050sin60221.65MPa06080508050cos602217.5MPa0608050sin60256.29MPa(0,40(-100,40(-50,01322101005040214.03MPa223010050402114MPa02040tan2010020019.3310122max010040264.03MPa(-20,45(45,4513221452012.545268MPa(12.5,0223452012.545243MPa02045tan2452020027.08110(-20,45(-45,4513221204532.5452(-32.5,0(-20,10(-50,10(-35,022220503510216.97MPa22320503510253MPa232020010tan2205020016.852022max205010218.03MPa(-80,30160,-30(40,02211608040302163.69MPa223160804030283.69MPa22max16080302123.69MPa02030tan2160802007.02110(100,-40(160,40(130,0221160100130402180MPa22316010013040280MPa22max16010040250MPa02040tan216010020026.57110(0,60(120,-60(60,022max120060284.85MPa221120060602144.85MPa22312006060224.85MPa02060tan2120020022.5110(38,28(114,4812(38,28(114,481222382811448cc86c2382856cR(38,28(114,4812c1cR142MPa2cR30MPa2075.3020029.70127.4某点处的应力如图所示,设σα、τα、σy值为已知,试考虑如何根据已知数据直接作出应力圆。(σy,0(σα,τα(70,40(30,40(50,013222max703040244.72MPa22170305040294.72MPa35044.725.28MPa7.7对图示的梁进行试验时,测得梁上点A处的应变为εx=0.5×10-3,εy=1.65×10-4。若梁材料的弹性模量E=210GPa,泊松比ν=0.3,试求梁上点A处的正应力σx和σy。xxy2E126.8MPa1yyx2E72.7MPa17.9如图所示为一体积为10mm×10mm×10mm的立方体铝块,放入宽度正好是10mm的钢槽中。设在立方体顶面施加的压力P=6kN,铝的横向变形系数ν=0.33,钢槽的变形可以忽略不计,试求铝块的三个主应力。xzyz0y2P600060MPaA0.01xxyz10Ex19.8MPa1z02x19.8MPa3y60MPa如图8.5所示的简支梁,已知其材料的许用应力[σ]=170MPa,[τ]=100MPa。试为此梁选择工字钢的型号,并按第四强度理论进行强度校核。210kN210kN210kN208kN208kN210kN8kN8kN41.8kNm41.8kNm45kNmmaxmaxzMW*3maxzzQS21010Id16.9cm7.5mm165.7MPa3zW264.7cm选择22a工字钢*maxzzQSId试算法*zzI:S24.6cm取:选择28a工字钢*maxzzQS100.4MPaId如图8.5所示的简支梁,已知其材料的许用应力[σ]=170MPa,[τ]=100MPa。试为此梁选择工字钢的型号,并按第四强度理论进行强度校核。210kN210kN210kN208kN208kN210kN8kN8kN41.8kNm41.8kNm45kNm*zz200kNS76.59MPaId考虑C、D截面腹板与翼板交界处:CDz41.8kNmy71.14MPaI22r43151MPa170MPa8.3如图8.7所示为钢轨与火车车轮接触点处的应力状态。已知σ1=-650MPa,σ2=-700MPa,σ3=-900MPa,钢轨材料的许用应力[σ]=250MPa。试用第三强度理论和第四强度理论分别校核接触点处材料的强度。r313650900250MPa250MPa222r41223311229MPa2250MPa8.5如图所示两端封闭的铸铁薄壁容器,已知其内径D=100mm,壁厚t=10mm,承受的荷载为内压力p=5MPa和两端的轴向压力P=100kN,材料的许用拉应力[σt]=40MPa,横向变形系数ν=0.25。试用第二强度理论校核其强度。pDppDp19.3MPa4tA4tDtpD25MPa2tp5MPa125MPa25MPa319.3MPar212331MPat40MPa8.10如图所示,在船舶螺旋桨轴的F—F截面上,由主机扭矩引起的剪应力τ=14.9MPa,由推力引起的压应力σx′=-4.2MPa,由螺旋桨等重力引起的最大弯曲正应力σx″=±22MPa。试求

1 / 51
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功