专题12.1 概率、二项分布与正态分布(原卷版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第十二章概率与统计专题1概率、二项分布与正态分布(理科)【三年高考】1.【2017课标1,理】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.π8C.12D.π42.【2017山东,理8】从分别标有1,2,,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A)518(B)49(C)59(D)793.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,表示抽到的二等品件数,则D。4.2017课标1,理19】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N.(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(3,3)之外的零件数,求(1)PX及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得16119.9716iixx,161622221111()(16)0.2121616iiiisxxxx,其中ix为抽取的第i个零件的尺寸,1,2,,16i.用样本平均数x作为的估计值ˆ,用样本标准差s作为的估计值ˆ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量Z服从正态分布2(,)N,则(33)0.9974PZ,160.99740.9592,0.0080.09.5.【2017江苏,7】记函数2()6fxxx的定义域为D.在区间[4,5]上随机取一个数x,则xD的概率是▲.6.【2016高考新课标1卷】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()(A)13(B)12(C)23(D)347.【2016高考新课标2理数】从区间0,1随机抽取2n个数1x,2x,…,nx,1y,2y,…,ny,构成n个数对11,xy,22,xy,…,,nnxy,其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率的近似值为(A)4nm(B)2nm(C)4mn(D)2mn8.【2016高考江苏卷】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是▲.9.【2016高考山东理数】在[1,1]-上随机地取一个数k,则事件“直线y=kx与圆22(5)9xy-+=相交”发生的概率为.10.【2015高考新课标1,理4】投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()(A)0.648(B)0.432(C)0.36(D)0.31211.【2015高考湖北,理4】设211(,)XN,222(,)YN,这两个正态分布密度曲线如图所示.下列结论中正确的是()A.21()()PYPYB.21()()PXPXC.对任意正数t,()()PXtPYtD.对任意正数t,()()PXtPYt【2017考试大纲】1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.4.了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.【三年高考命题回顾】纵观前三年各地高考试题,概率问题是每年高考必考内容.主要考查等可能事件的概率计算公式,互斥事件的概率加法公式,对立事件的概率减法公式,相互独立事件的概率乘法公式,事件在n次独立重复试验种恰好发生k次的概率计算公式,以及几何概型,条件概率,二项分布,正态分布等基本公式的应用.【2018年高考复习建议与高考命题预测】由前三年的高考命题形式可以看出,只要我们理解和掌握各种概率公式及其应用,夯实基础,借助排列组合知识和化归转化思想方法,就能顺利解答高考概率与统计试题.概率统计试题在试卷中的题型逐年发生变化,本部分题多为中低档题.一般是一个选择题、一道解答题.选择题或填空题以中低档题为主,解答题中等难度,重点考查基本概念及运算,往往与统计问题综合在一起,如以直方图或茎叶图提供问题的背景信息,在同一个问题中同时考查概率与统计的知识,成为近年命题的一个明显趋势.预测2018年的高考在概率依然会有一道小题,一道大题,难度中等,但应充分注意以统计为载体问题实质涉及概率与统计的综合解答题有可能连续出现,本节的内容还是一个重点考查的内容,因为这部分内容与实际生活联系比较大,随着新课改的深入,高考将越来越重视这部分的内容,概率统计将是重点考查内容,特别是这两年加强边缘知识考查,如正态分布.概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题.这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神.【2018年高考考点定位】本节内容高考的重点就是利用等可能事件的概率计算公式,互斥事件的概率加法公式,对立事件的概率减法公式,相互独立事件的概率乘法公式,事件在n次独立重复试验种恰好发生k次的概率计算公式,二项分布,正态分布等基本公式的应用,重点考查学生的抽象概括能力,分析问题,解决问题的能力及分类讨论的数学思想方法.题型既有选择题也有填空题,难度中等偏下.【考点1】随机事件的概率【备考知识梳理】事件A的概率:在大量重复进行同一试验时,事件A发生的频率nm总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A).由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0.[来源:Z.xx.k.Com]等可能性事件的概率:一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成.如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n1.如果某个事件A包含的结果有m个,那么事件A的概率P(A)=nm.使用公式P(A)=nm计算时,确定m、n的数值是关键所在,其计算方法灵活多变,没有固定的模式,可充分利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏.【规律方法技巧】求解等可能性事件A的概率一般遵循如下步骤:(1)先确定一次试验是什么,此时一次试验的可能性结果有多少,即求出A.(2)再确定所研究的事件A是什么,事件A包括结果有多少,即求出m.(3)应用等可能性事件概率公式P=nm计算.【考点针对训练】1.【2017届山西省高三3月一模】甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领取的钱数不少于其他任何人)的概率是()A.34B.13C.310D.252.【天津市河东区2017届高三二模】为丰富少儿文体活动,某学校从篮球,足球,排球,橄榄球中任选2种球给甲班学生使用,剩余的2种球给乙班学生使用,则篮球和足球不在同一班的概率是()A.B.C.D.【考点2】互斥事件有一个发生的概率【备考知识梳理】事件A、B的和记作A+B,表示事件A、B至少有一个发生.当A、B为互斥事件时,事件A+B是由“A发生而B不发生”以及“B发生而A不发生”构成的,因此当A和B互斥时,事件A+B的概率满足加法公式:P(A+B)=P(A)+P(B)(A、B互斥),且有P(A+A)=P(A)+P(A)=1.当计算事件A的概率P(A)比较困难时,有时计算它的对立事件A的概率则要容易些,为此有P(A)=1-P(A).[来源:Zxxk.Com]对于n个互斥事件A1,A2,…,An,其加法公式为P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).概率加法公式仅适用于互斥事件,即当A、B互斥时,P(A+B)=P(A)+P(B),否则公式不能使用.【规律方法技巧】如果某事件A发生包含的情况较多,而它的对立事件(即A不发生)所包含的情形较少,利用公式P(A)=1-P(A)计算A的概率则比较方便.这不仅体现逆向思维,同时对培养思维的灵活性是非常有益的.求某些稍复杂的事件的概率时,通常有两种方法:一是将所求事件的概率化成一些彼此互斥的事件的概率的和;二是先去求此事件的对立事件的概率.【考点针对训练】1.【福建省泉州市2017届高三高考考前适应性模拟】从含有质地均匀且大小相同的2个红球、n个白球的口袋中随机取出一球,若取到红球的概率是25,则取得白球的概率等于()A.15B.25C.35D.452.【2017届宁夏六盘山高三第三次模拟】从装有3个红球、2个白球的袋中任取3个球,若事件A“所取的3个球中至少有1个白球”,则事件A的对立事件是()A.1个白球2个红球B.2个白球1个红球C.3个都是红球D.至少有一个红球【考点3】相互独立事件同时发生的概率【备考知识梳理】1.事件A与B的积记作A·B,A·B表示这样一个事件,即A与B同时发生.当A和B是相互独立事件时,事件A·B满足乘法公式P(A·B)=P(A)·P(B),还要弄清A·B,BA的区别.A·B表示事件A与B同时发生,因此它们的对立事件A与B同时不发生,也等价于A与B至少有一个发生的对立事件即BA,因此有A·B≠BA,但A·B=BA.2.条件概率及其性质(1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号/pBA来表示,其公式为/pABpBAPA.在古典概型中,若用nA表示事件A中基本事件的个数,则/nABpBAnA.(2)条件概率具有的性质:①0/1pBA;②如果B和C是两互斥事件,则///pBCApBApCA.【规律方法技巧】1.条件概率的求法(1)定义法:先求PA和pAB,再由/pABpBAPA,求/pBA;(2)基本事件法:借古典概型概率公式,先求事件A包含的基本事件数nA,再求事件AB所包含的基本事件数nAB,得/nABpBAnA.2.求相互独立事件同时发生的概率的方法(1)利用相互独立事件的概率乘法公式直接求解;(2)正面计算较繁或难以入手时,可从其对立事件入手计算.相互独立事件的概率通常和互斥事件的概率综合在一起考查,这类问题具有一个明显的特征,那就是在题目的条件中已经出现一些概率值,解题时先要判断事件的性质(是互斥还是相互独立),再选择相应的公式计算求解.3.应用公式时,要注意前提条件,只有对于相互独立事件A与B来说,才能运用公式P(A·B)=P(A)·P(B)..在学习过程中,要善于将较复杂的事件分解为互斥

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功