石墨烯复合材料的性质及应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

石墨烯复合材料的性质及应用三石墨烯基复合材料的应用二石墨烯基复合材料的分类一石墨烯复合材料的结构绪论绪论石墨烯自2004年由曼彻斯特大学Meyer等、Novoselov等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法、晶体外延法、化学气相沉积法、插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其他材料体系进行复合。从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文中综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。1石墨烯复合材料的结构①石墨烯负载的复合材料;②石墨烯包裹的复合材料;③石墨烯内嵌的复合材料;④基于石墨烯层状复合材料。①石墨烯负载的复合材料石墨烯负载的复合材料是在石墨烯表面引入第二组分并在其表面进行外延伸展得到的。②石墨烯包裹的复合材料石墨烯包裹的复合材料是用石墨烯片将第二组分包裹得到的,可以更有效地防止第二组分的聚合。③石墨烯内嵌的复合材料石墨烯内嵌的复合材料是将石墨烯纳米片作为填充物充分分散在第二组分的基体相中得到的。其中基体相可以是纳米材料,也可以是块体材料组成。在现阶段的研究中,石墨烯内嵌的复合材料的第二组分以聚合物居多,但一些无机化合物如陶瓷材料也可以嵌入石墨烯中形成石墨烯内嵌的功能陶瓷材料。由于石墨烯具有很大的比表面积和很高的导电率,使得这些陶瓷材料具有更好的性质和应用价值。④基于石墨烯层状复合材料石墨烯层状复合材料是将第二组分和石墨烯片交替堆积而成,该结构可以使石墨烯与第二组分的接触面积最大化,并有利于电子的产生、传输和分离。2石墨烯基复合材料的分类2.1石墨烯-纳米粒子复合材料2.2石墨烯-聚合物复合材料2.3石墨烯-碳基材料复合材料石墨烯具有诸多优异的性能,如导电导热性好、韧性好、比表面积大等等,这些性能使得石墨烯基复合材料呈现出许多优异的特性。如以石墨烯为载体负载纳米粒子,可以提高这些粒子的催化性能、传导性能;利用石墨烯较好的韧性,将其添加到高分子中,可以提高高分子材料的机械性能和导电性能。按第二组分的不同,可将石墨烯复合材料分为石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。2.1石墨烯-纳米粒子复合材料石墨烯与其他碳材料(碳纳米管、富勒烯等)相比,表现出优异的电学、光学等物理化学性质,以及有较低的制备成本,使得石墨烯成为了纳米粒子的潜在载体。由于片层间范德华力的作用,石墨烯往往存在着不可逆的团聚现象,而存在于石墨烯层间的纳米粒子正好起到分离邻近石墨烯片层、防止发生团聚的作用。近年来,人们创造性地将石墨烯与纳米粒子复合起来,形成了一个新的研究领域。可与石墨烯形成复合物的纳米粒子有很多,如负载金属纳米粒子(Pt、Au、Pd、Ag等)、氧化物纳米粒子(Cu2O、TiO2、SnO2等)以及硫化物纳米粒子(CdS)等。这些不同负载粒子的石墨烯复合材料也呈现出了许多不同的性质。石墨烯/V2O5复合材料,石墨烯/SnO2复合材料、石墨烯/Co3O4复合材料、石墨烯/MoO2复合材料、石墨烯/Mn3O4复合材料等石墨烯/金属氧化物复合材料2.2石墨烯-聚合物复合材料之前已经有许多关于碳基材料-聚合物复合材料的报道,特别是基于碳纳米线、碳纳米管和富勒烯-聚合物复合材料的研究,作为碳材料家族独特的一员,石墨烯同样可以作为添加材料或载体与聚合物进行复合。石墨烯由于其独特的结构和性能,在改善聚合物的热性能、力学性能和电性能等方面具有相当大的应用价值。2.3石墨烯-碳基材料复合材料石墨烯除了能够和纳米粒子、高聚物复合外,还可以与其他碳基材料(碳纳米管、富勒烯等)组装形成复合材料,这些碳基材料可以相互组合而呈现出一些优越的性能。如石墨烯包覆CNT-S纳米复合材料。三石墨烯基复合材料的应用3.1在催化领域的应用3.2在电化学领域的应用3.3在生物医药领域的应用3.4在含能材料领域的应用石墨烯由于其具有独特的二维结构使其成为制备复合材料非常理想的成分,而石墨烯内在的优异性能也使得石墨烯基复合材料呈现出许多优异的特性,并受到了许多研究者的关注。同时复合物的制备也拓宽了石墨烯材料的研究领域,使得石墨烯材料向实际应用方面更迈进了一步。3.1在催化领域的应用由于石墨烯具有优异的导电性、导热性和结构稳定性等性能以及具有改性担载金属催化剂的作用,使得石墨烯基催化剂拥有了许多特殊的催化活性。Li等[22]通过还原氧化石墨烯和H2PtCl6制备出石墨烯/Pt纳米复合材料,电化学实验表明,石墨烯/Pt比传统的Pt催化剂对甲醇氧化有更好的效果和稳定性。兰瑞家等采用水热法制备出了石墨烯/TiO2复合材料,在紫外光照射下,石墨烯/TiO2复合材料催化降解甲基蓝水溶液的活性是TiO2的2.5倍,这种降解效率的提高主要是依赖于复合材料中的石墨烯可以传导光照TiO2产生的电子,提高了电子空穴对的分离效率。3.2在电化学领域的应用为了得到高比容超级电容器,一些研究组设计合成了多种石墨烯复合材料将其应用于电极材料,如聚苯胺/石墨烯、MnO2/石墨烯等。但是石墨烯易发生团聚而不能有效利用,这也是石墨烯在电化学领域广泛应用的一个难题。国内有人首先合成了石墨烯纸,在其表面电聚合聚苯胺得到聚苯胺/石墨烯,将其作为电极材料,得到电容量较大的电容器。还有人通过一步法制备了SnO2/石墨烯复合材料,这种复合材料在1moL/L的电解质中的比电容达到43.4F/g。也有人以氧化石墨烯和醋酸铜作为前驱体制备出了石墨烯/Cu2O复合材料,并表现出良好的电化学性能。3.3在生物医药领域的应用石墨烯的部分双键被氧化以后转化为石墨烯氧化物,其所携带的羟基、羧基、环氧基、羰基等亲水性官能团使石墨烯氧化物可以在水溶液或生理溶液中稳定存在,具有较高的水溶性,有望像溶液一样适应于静脉注射;另外,石墨烯还具备低毒性、比表面积大等特点,在药物载体中有潜在的应用价值。有人采用一步合成法制备了普郎尼克PF127/石墨烯复合物,可以有效地负载阿霉素(DOX),负载率可达到289%,且在生理溶液中具有很高的稳定性和分散性。此复合材料几乎没有细胞毒性,负载DOX时可促进DOX转移到MCF-7细胞,从而对肿瘤细胞有更好的杀伤作用。目前石墨烯复合材料在生物医药领域的应用存在载药种类少和治愈范围小等缺点,其负载抗癌药物主要为盐酸阿霉素、三苯氧胺柠檬酸盐和喜树碱类等,未来可将石墨烯复合物应用于蛋白和基因药物靶向运输和治疗等更深层次方面3.4在含能材料领域的应用火炸药在国防、民用等各个领域都是不可替代的,所以它的安全性很重要,既要能稳定地存在又要便于检测。而石墨烯具有一定的钝感性和导电导热性,在含能材料领域有一定的应用价值,目前主要体现在炸药传感器和包覆降感上。有人制备出离子液体-石墨烯混合物(IL-G)的修饰电极,作为炸药传感器实现了对TNT的灵敏检测,结果表明,IL-G修饰的电极具有更低的本底电流,更高的灵敏度,更好的可重复性和更低的检测限度(0.5ng/mL)。后来课题组做了石墨烯对奥克托今(HMX)的降感研究,发现包覆后奥克托今感度有一定程度的下降,增加了奥克托今的安全性。结语石墨烯以其独特的结构和性质一经出现即成为材料领域研究热点。目前石墨烯复合材料的研究主要集中在石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料及其在催化、电化学、生物医药和含能材料等领域的应用研究上。其中石墨烯在含能材料领域的应用相对较少,结合石墨烯优异的增强效果以及含能材料的性质,相信石墨烯在含能材料领域的应用将成为一个研究热点。

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功