三垂线定理及其逆定理人教版原创

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

pO自一点向平面引垂线,垂足叫做这点在这个平面上的射影;这个点与垂足间的线段叫做这点到这个平面的垂线段。Q(1)射影一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点叫做斜足。斜线上一点与斜足间的线段叫做这点到这个平面的斜线段。ACB过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面上的射影;垂足与斜足间的线段叫做这点到平面的斜线段在这个平面上的射影。斜线上任意一点在平面上的射影,一定在斜线的射影上。ACBO定理从平面外一点向这个平面所引的垂线段和斜线段中,(1)射影相等的两条斜线段相等,射影较长的斜线段也较长(2)相等的斜线段的射影相等,较长的斜线段的射影也较长(3)垂线段比任何一条斜线段都短AaOP已知PA、PO分别是平面的垂线、斜线,AO是PO在平面上的射影。a,a⊥AO。求证:a⊥PO在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么,它就和这条斜线垂直。三垂线定理AaOP证明:a⊥POPA⊥aAO⊥a,AO与PA相交a⊥平面PAOPO平面PAOPA⊥aPCBA例1已知P是平面ABC外一点,PA⊥平面ABC,AC⊥BC,求证:PC⊥BC证明:∵PA⊥平面ABC∴PC是平面ABC的斜线∴AC是PC在平面ABC上的射影∵BC平面ABC且AC⊥BC∴由三垂线定理得PC⊥BC例2直接利用三垂线定理证明下列各题:(1)PA⊥正方形ABCD所在平面,O为对角线BD的中点求证:PO⊥BD,PC⊥BD(3)在正方体AC1中,求证:A1C⊥B1D1,A1C⊥BC1(2)已知:PA⊥平面PBC,PB=PC,M是BC的中点,求证:BC⊥AMADCBA1D1B1C1(1)(2)BPMCA(3)POABCDPMCABPAOaαA1C1CBB1OAαaP我们要学会从纷繁的已知条件中找出或者创造出符合三垂线定理的条件解题回顾,怎么找?三垂线定理解题的关键:找三垂!怎么找?一找直线和平面垂直二找平面的斜线在平面内的射影和平面内的一条直线垂直注意:由一垂、二垂直接得出第三垂并不是三垂都作为已知条件解题回顾PAOaαPAOaαbcde三垂线定理是平面的一条斜线与平面内的直线垂直的判定定理,这两条直线可以是:①相交直线②异面直线使用三垂线定理还应注意些什么?解题回顾直线a在一定要在平面内,如果a不在平面内,定理就不一定成立。PAOaα例如:当b⊥时,b⊥OA注意:如果将定理中“在平面内”的条件去掉,结论仍然成立吗?b但b不垂直于OP解题回顾PAOaα三垂线定理包含几种垂直关系?②线射垂直PAOaα①线面垂直③线斜垂直PAOaα直线和平面垂直平面内的直线和平面一条斜线的射影垂直平面内的直线和平面的一条斜线垂直线射垂直线斜垂直PAOaαPAOaα平面内的一条直线和平面的一条斜线在平面内的射影垂直平面内的一条直线和平面的一条斜线垂直三垂线定理的逆定理?在平面内的一条直线,如果和这个平面的一条斜线垂直,那么,它也和这条斜线的射影垂直。PAOaα已知:PA,PO分别是平面的垂线和斜线,AO是PO在平面的射影,a,a⊥PO求证:a⊥AO三垂线定理的逆定理三垂线定理的逆定理在平面内的一条直线,如果和这个平面的一条斜线垂直,那么,它也和这条斜线的射影垂直。三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么,它就和这条斜线垂直。线射垂直线斜垂直定理逆定理线射垂直线斜垂直定理逆定理例3在四面体ABCD中,已知AB⊥CD,AC⊥BD求证:AD⊥BC∴DO⊥BC,于是AD⊥BC.证明:作AO⊥平面BCD于点O,连接BO,CO,DO,则BO,CO,DO分别为AB,AC,AD在平面BCD上的射影。OADCB∵AB⊥CD,∴BO⊥CD,同理CO⊥BD,于是O是△BCD的垂心,精品课件!精品课件!1.已知PA、PB、PC两两垂直,求证:P在平面ABC内的射影是△ABC的垂心。CBPAH2.经过一个角的顶点引这个角所在平面的斜线,如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线。练习:

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功