Tensor products of q-superalgebra representations

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

Tensorproductsofq-superalgebrarepresentationsandq-seriesidentities.WonSangChungDepartmentofPhysics,GyeongsangNationalUniversity,Jinju,660-701,Korea.E.G.KalninsDepartmentofMathematicsandStatistics,UniversityofWaikato,Hamilton,NewZealand.andW.Miller,Jr.SchoolofMathematics,UniversityofMinnesota,Minneapolis,Minnesota,55455,U.S.A.December13,2001AbstractWeworkoutexamplesoftensorproductsfordistinctq-generalizationsofeu-clidean,oscillatorands‘(2)typesuperalgebras,incaseswherethemethodofhighestweightvectorswillnotapply.Inparticular,weusethethree-termrecurrencerelationsforAskey-Wilsonpolynomialstodecomposethetensorproductofrepresentationsfromthepositivediscreteseriesandrepresenta-tionsfromthenegativediscreteseries.Weshowthatvariousq-analogsoftheexponentialfunctioncanbeusedtomimictheexponentialmappingfromaLiealgebratoitsLiegroupandwecomputethecorrespondingmatrixel-ementsofthe\groupoperatorsontheserepresentationspaces.WeshowWorksupportedinpartbytheNationalScienceFoundationundergrantDMS94{005331991MathematicsSubjectClassication:33D55,33D45,17B37,81R501thatthematrixelementsthemselvestransformirreduciblyundertheactionofthequantumsuperalgebra.Themostimportantq-seriesidentitiesderivedhereareinterpretedastheexpansionofthematrixelementsofa\groupoperator(viatheexponentialmapping)inatensorproductbasisintermsofthematrixelementsinareducedbasis.Theyinvolveq-hypergeometricserieswithbaseq;0q1.1IntroductionZhedanovandothershaveintroducedaproductofgeneralizeds‘q(2)algebrasthatallowsonetotaketensorproductsofrepresentationscorrespondingtotwodistinctalgebras,[28,8,7].Theirgeneralizationisanalgebra(v;u)withgeneratorsH,E+,Ewhichobeythecommutationrelations[H;E+]=E+;[H;E]=E;[E+;E]=uqHvqH:(1)Here,uandvarerealnumbersand0q1.Foruv6=0thisalgebraisisomorphictooneofthetrues‘q(2)typealgebras,foruv=0;u2+v20itisisomorphictoaspecialrealizationoftheq-oscillatoralgebra,andforu=v=0itisisomorphictotheEuclideanLiealgebram(2),[12].ThisalgebrahasaninvariantelementC=E+E+vqHuq1H1q:(2)AspointedoutbyZhedanovandothers[28,8,7],thefamilyofalgebrasadmitsamultiplication(v;u)(u;t)=(v;t),denedbyF+=(E+)=E+q12H+q12HE+;F=(E)=Eq12H+q12HE;(3)L=(H)=HI+IH:TheoperatorsF,Lsatisfythecommutationrelations(1).Using(3)wecaneasilydenethetensorproductofarepresentationof(v;u)andtherepresentationof(u;t),therebyobtainingarepresentationof(v;t).Thisconstructionyieldsaconvenientgeneralizationofthetensorproduct2computationsin,forexample,[13,14,15].Wefollowthisideatostudygeneralizationsoftheospq(1=2)algebra,[3,21,23].Inthispapertheq-superalgebra[v;u]isdenedbythegeneratorsH;Vandrelations[H;V]=12V;fV+;Vg=uq2Hvq2H;(4)where[A;B]=ABBAandfA;Bg=AB+BA.Here,u;vareparameters.The\CasimiroperatorCfor[v;u]isC=V+V+v1+qq2H+u1+q1q2H(5)andsatisestherelations[H;C]=0;fV;Cg=0:(6)NotethatC2isaninvariantoperator,i.e.,C2commuteswithallelementsofthe[v;u]algebra.WedenethecoproductL=(H)=HI+IH;F=(V)=VqH+qHV;(7)where(AB)(CD)=(1)p(B)p(C)ACBD:(8)Herep(A)istheparityoftheoperatorA.InthiscasethebosonicvariablesH;qHhaveparity0andthefermionicvariablesVhaveparity1,[2,21].Itfollowsthatthisalgebraadmitsamultiplicationoftheform[v;u][u;t]=[v;t];(9)wheretherstfactorcorrespondstothealgebra[v;u]andthesecondfactortoalgebra[u;t].Indeedtherelations[L;F]=12F;fF+;Fg=tq2Lvq2L;(10)aresatised.TheonlynontrivialpartoftheproofisfF;F+g=3(uq2Hvq2H)q2H+q2H(tq2H+uq2H)=tq2Hq2Hvq2Hq2H=tq2Lvq2L:Inx2andx3westudyirreduciblerepresentationsofthe\Euclideanalgebra[0;0]andworkoutthe(nonunique)tensorproductdecompositionfor[0;0][0;0]=[0;0]:WecomputetheClebsch-Gordancoecientsfortheexpansionandusethemtoderiveq-seriesidentitiesforthespecialfunctionsthatappearnaturallyinthetheory.Theyareinterpretedhereasexpansionsofthematrixelementsofa\groupoperatorinatensorproductbasisintermsofthematrixelementsinareducedbasis.Theq-seriesarebaseq,asfollowsnaturallyfromexpres-sions(7).Inx4wecarryouttheanalogousconstructionsforpositivediscreteseriesrepresentationsofthegeneralalgebra[v;u]forv2+u20tensoredwithnegativediscreteseriesrepresentations.Hereourmethodsleadnatu-rallytoathree-termrecurrencerelationfortheClebsch-GordancoecientsthatcanbesolvedthroughcomparisonwiththerecurrencerelationwithAskey-Wilsonpolynomials.Thisyieldsthemeasure(notnecessarilyposi-tive)determiningthedecompositionofthetensorproductintoirreduciblecomponents.Thenotationusedforq-seriesandq-integralsinthispaperfollowsthatofGasperandRahman[6].2Euclideanq-superalgebrarepresentationsThethreedimensionalq-supersymmetricLiealgebra[0;0]isdeterminedbyitsgeneratorsH,V+,Vwhichobeytherelations[H;V]=V;fV+;Vg=0:(11)Weconsiderananalogy(!)oftheinnitedimensionalirreduciblerepresen-tationsoftheEuclideanLiealgebra,characterizedbythenonzerocomplexnumber!ThespectrumofHcorrespondingto(!)isthesetS=fn=2:n2Zgandthecomplexrepresentationspacehasbasisvectorsfm,m2S,suchthatV+fm=!fm+1;Vfm=(1)m!fm1;Hfm=m2fm;(12)4whereCV+Visthe\Casimiroperator,withCfm=(1)m!2fm.Notethattherepresentations(!)and(!)areequivalent.Asimplereali

1 / 30
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功