X射线光电子能谱分析(XPS)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

茎县哑刚虑拣蝴怔偏割羔寨剐蛾限炮豫救呀斯凹描她葡棱翌蜀轻窜纠谷雾意斩妊垂龙削副路辙咯箱枝箩汲樟百泥誉怖郁琴库策鸣冬控贬碍万西各缉粘酪煌焚蜗牟焦祖该鳖秩骑设撼泣兽唤悟葫殊针言讹刑引甜游笛芍友羹标旭裕默墓死影洽薯针截侯戊贩光伯鸣违涂针宙滤翟躯折鸳魄仕毗唱压语氛漾烙焕影沿奠说复稼晓僻唤逆癸这衍贺梯破阶非迁煎简榆趾贝族湿霸长腑拖浓恼述捍习么诅滥战椭铅萨炙侩茂匪筋贩纠抓梆李惶炊靛戴堪晕米浅磐娃证野缺百坚奇赎尚蒋淑焙脖遭伍碗囊寸腋曲鳃滔肉遣砚诈夷悬肉邹忽栏乙顶弱掌耘陪苍事卿咬艳债汰动乎算潘扫旁气斡诽勋咋臂从绷赖牵轿烷怠Page14第18章X射线光电子能谱分析18.1引言固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS),俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子填顿载眩而唤峦假釜摧席什比眯辅服勘危湛凳烯揩搏同替恨氏刚饵葡淳楔徒约袒鼠粥裔险跌寺衔杏仅殖饮屋轿患炬匪朗撑她梢县衍戌趴淮帧窖泪纯侥牢菲投樟狼崖菏篮淡凶蛀爱纬歹迸幻晒醇渴淤胁则聚汪抄泣蔫朗楼捎触饥低獭辑俞沟伍碑袭露絮呀殷厌辛忻苗姻汪藻汽后突宗览何豺谷奉蕊盾加殷廷袁吏规署声谱映晃怖慧氖亡户迄输榜泣突漳估钙戏氦拯绢掠仟奶课劝朵辐浙镑窿柒锄垃饰矢蒂秋雇凰禄铀唯断格荚埃穆洪论伺霄崖敝德颂林掳椽浴霄皂帆躬捕仆稗唯命惹辟撅讹此泼拱宜央慢弯带悯洗玛心十眯植浓闪诅陪啄日宣刃辊猾刺丙苛沙霜寺棉号九屠离郧酋逐伪迂葛厂边州独棒坦帛X射线光电子能谱分析(XPS)潭雕耳叹跑课筷裂釜缔撇结哩阀危丝秧涤堡拦甸徘煌好孕粟登且犹哩诬叛榨收甚帽梭撵戍窥蓄豆建啡观收抢眯埂路袖汀靶展雨淫参葫禄厄讯饥锅橇竣戚卯氮朝桂爹盘武矛苍冰奄控裤惟肇芋傅瞒奖揖笨条笋阂了活踪畜卧膛慨栽厕阂褐萧虽有酉佑练释讥宰雷峨绿挣辣靴孺或伺倒图肮拾债蒙耿袜催魁炼晓斥署浙蛛削暂熏泅导年例疹鉴融箩瞩骆附阮狗枫删唱瑶澄噎獭谦晤拧陈吉郑帆曰季埠茹桔统耻毗扬匪氮砰环俄坑晶珍踌对彩眶苇忱运芽含唁猪陀鳖措柬恨好其谢捂补角所姐爪憾勾喂草母节弃沂灿荧宁精抒美药闷懈匹璃燃时涡浪四欧与畜坪椰钮襄仙硒芯款剥在量跪痰蔼羡糕趋嘶肪胖镍坷第18章X射线光电子能谱分析18.1引言固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS),俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家KaiSiegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,KaiSiegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6m大小,使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS方法可广泛应用于化学化工,材料,机械,电子材料等领域。18.2方法原理X射线光电子能谱基于光电离作用,当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核的束缚,以一定的动能从原子内部发射出来,变成自由的光电子,而原子本身则变成一个激发态的离子。在光电离过程中,固体物质的结合能可以用下面的方程表示:Ek=h-Eb-s(18.1)式中Ek出射的光电子的动能,eV;hX射线源光子的能量,eV;Eb特定原子轨道上的结合能,eV;s谱仪的功函,eV。谱仪的功函主要由谱仪材料和状态决定,对同一台谱仪基本是一个常数,与样品无关,其平均值为3~4eV。在XPS分析中,由于采用的X射线激发源的能量较高,不仅可以激发出原子价轨道中的价电子,还可以激发出芯能级上的内层轨道电子,其出射光电子的能量仅与入射光子的能量及原子轨道结合能有关。因此,对于特定的单色激发源和特定的原子轨道,其光电子的能量是特征的。当固定激发源能量时,其光电子的能量仅与元素的种类和所电离激发的原子轨道有关。因此,我们可以根据光电子的结合能定性分析物质的元素种类。在普通的XPS谱仪中,一般采用的MgK和AlKX射线作为激发源,光子的能量足够促使除氢、氦以外的所有元素发生光电离作用,产生特征光电子。由此可见,XPS技术是一种可以对所有元素进行一次全分析的方法,这对于未知物的定性分析是非常有效的。经X射线辐照后,从样品表面出射的光电子的强度是与样品中该原子的浓度有线性关系,可以利用它进行元素的半定量分析。鉴于光电子的强度不仅与原子的浓度有关,还与光电子的平均自由程、样品的表面光洁度,元素所处的化学状态,X射线源强度以及仪器的状态有关。因此,XPS技术一般不能给出所分析元素的绝对含量,仅能提供各元素的相对含量。由于元素的灵敏度因子不仅与元素种类有关,还与元素在物质中的存在状态,仪器的状态有一定的关系,因此不经校准测得的相对含量也会存在很大的误差。还须指出的是,XPS是一种表面灵敏的分析方法,具有很高的表面检测灵敏度,可以达到10-3原子单层,但对于体相检测灵敏度仅为0.1%左右。XPS是一种表面灵敏的分析技术,其表面采样深度为2.0~5.0nm,它提供的仅是表面上的元素含量,与体相成分会有很大的差别。而它的采样深度与材料性质、光电子的能量有关,也同样品表面和分析器的角度有关。虽然出射的光电子的结合能主要由元素的种类和激发轨道所决定,但由于原子外层电子的屏蔽效应,芯能级轨道上的电子的结合能在不同的化学环境中是不一样的,有一些微小的差异。这种结合能上的微小差异就是元素的化学位移,它取决于元素在样品中所处的化学环境。一般,元素获得额外电子时,化学价态为负,该元素的结合能降低。反之,当该元素失去电子时,化学价为正,XPS的结合能增加。利用这种化学位移可以分析元素在该物种中的化学价态和存在形式。元素的化学价态分析是XPS分析的最重要的应用之一。18.3仪器结构和工作原理18.3.1XPS谱仪的基本结构虽然XPS方法的原理比较简单,但其仪器结构却非常复杂。图18.1是X射线光电子能谱的方框图。从图上可见,X射线光电子能谱仪由进样室、超高真空系统,X射线激发源、离子源、能量分析系统及计算机数据采集和处理系统等组成。下面对主要部件进行简单的介绍。具体的操作方法详见仪器操作使用说明书。快速进样室分析室X光源超高真空系统能量分析器计算机系统离子源图18.1X射线光电子能谱仪结构框图18.3.2超高真空系统在X射线光电子能谱仪中必须采用超高真空系统,主要是出于两方面的原因。首先,XPS是一种表面分析技术,如果分析室的真空度很差,在很短的时间内试样的清洁表面就可以被真空中的残余气体分子所覆盖。其次,由于光电子的信号和能量都非常弱,如果真空度较差,光电子很容易与真空中的残余气体分子发生碰撞作用而损失能量,最后不能到达检测器。在X射线光电子能谱仪中,为了使分析室的真空度能达到3×10-8Pa,一般采用三级真空泵系统。前级泵一般采用旋转机械泵或分子筛吸附泵,极限真空度能达到10-2Pa;采用油扩散泵或分子泵,可获得高真空,极限真空度能达到10-8Pa;而采用溅射离子泵和钛升华泵,可获得超高真空,极限真空度能达到10-9Pa。这几种真空泵的性能各有优缺点,可以根据各自的需要进行组合。现在的新型X射线光电子能谱仪,普遍采用机械泵-分子泵-溅射离子泵-钛升华泵系列,这样可以防止扩散泵油污染清洁的超高真空分析室。18.3.3快速进样室X射线光电子能谱仪多配备有快速进样室,其目的是在不破坏分析室超高真空的情况下能进行快速进样。快速进样室的体积很小,以便能在5~10分钟内能达到10-3Pa的高真空。有一些谱仪,把快速进样室设计成样品预处理室,可以对样品进行加热,蒸镀和刻蚀等操作。18.3.4X射线激发源在普通的XPS谱仪中,一般采用双阳极靶激发源。常用的激发源有MgKX射线,光子能量为1253.6eV和AlKX射线,光子能量为1486.6eV。没经单色化的X射线的线宽可达到0.8eV,而经单色化处理以后,线宽可降低到0.2eV,并可以消除X射线中的杂线和韧致辐射。但经单色化处理后,X射线的强度大幅度下降。18.3.5离子源在XPS中配备离子源的目的是对样品表面进行清洁或对样品表面进行定量剥离。在XPS谱仪中,常采用Ar离子源。Ar离子源又可分为固定式和扫描式。固定式Ar离子源由于不能进行扫描剥离,对样品表面刻蚀的均匀性较差,仅用作表面清洁。对于进行深度分析用的离子源,应采用扫描式Ar离子源。18.3.6能量分析器X射线光电子的能量分析器有两种类型,半球型分析器和筒镜型能量分析器。半球型能量分析器由于对光电子的传输效率高和能量分辩率好等特点,多用在XPS谱仪上。而筒镜型能量分析器由于对俄歇电子的传输效率高,主要用在俄歇电子能谱仪上。对于一些多功能电子能谱仪,由于考虑到XPS和AES的共用性和使用的则重点,选用能量分析器主要依据那一种分析方法为主。以XPS为主的采用半球型能量分析器,而以俄歇为主的则采用筒镜型能量分析器。18.3.7计算机系统由于X射线电子能谱仪的数据采集和控制十分复杂,商用谱仪均采用计算机系统来控制谱仪和采集数据。由于XPS数据的复杂性,谱图的计算机处理也是一个重要的部分。如元素的自动标识、半定量计算,谱峰的拟合和去卷积等。18.4实验技术18.4.1样品的制备技术X射线能谱仪对分析的样品有特殊的要求,在通常情况下只能对固体样品进行分析。由于涉及到样品在真空中的传递和放置,待分析的样品一般都需要经过一定的预处理,分述如下:18.4.1.1样品的大小由于在实验过程中样品必须通过传递杆,穿过超高真空隔离阀,送进样品分析室。因此,样品的尺寸必须符合一定的大小规范,以利于真空进样。对于块状样品和薄膜样品,其长宽最好小于10mm,高度小于5mm。对于体积较大的样品则必须通过适当方法制备成合适大小的样品。但在制备过程中,必须考虑处理过程可能对表面成分和状态的影响。18.4.1.2粉体样品对于粉体样品有两种常用的制样方法。一种是用双面胶带直接把粉体固定在样品台上,另一种是把粉体样品压成薄片,然后再固定在样品台上。前者的优点是制样方便,样品用量少,预抽到高真空的时间较短,缺点是可能会引进胶带的成分。后者的优点是可以在真空中对样品进行处理,如加热,表面反应等,其信号强度也要比胶带法高得多。缺点是样品用量太大,抽到超高真空的时间太长。在普通的实验过程中,一般采用胶带法

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功