小学数学与初中数学的区别与对策和小学数学相比,初中数学内容多、抽象、理论性强、难度大,因而有不少学生进入初中之后不适应,这就使相当多的学生学习数学感到困难,从而产生畏惧感。其实只要方法得当,完全能够良好过度。对即将升入初中的你首先恭喜你即将步入中学的大门,曾经只是一颗小树苗的你,进入中学后,就已经是一棵小树了,你会跟随着学校的步伐、社会的步伐、世界的步伐,慢慢长大、慢慢成长,做一棵参天大树。1.调整心态,笑迎挑战以前有的孩子有过这样的疑惑:多少人没有学过数学,不都活得好好的吗?那些烦人的公式、定理对现实生活有啥意义啊,买东西时你知道100块钱咋给它破开找钱就得了呗!可现在随着学习知识越来越深你会发现,几乎所有的自然科学都要以数学做强大的基础。物理中的力、热、光、电各大课题,计算机中的编程开发、软件应用,都要用数学,这些都显而易见;很多工科方面的都要用到大量的统计学的原理,生物、化学的研究与应用都要用到大量数学规律,就连绘画、建筑、美学等都是很需要数学的!所以数学千万不可小觑。等你真正发现数学的魅力时,你定会爱上它的。2.学习方法是关键你在小学的许多良好的学习方法和习惯应该继续保持哦。如上课坐姿端正,答题踊跃,声音响亮,积极举手发言等,这些都是初中学生健康、全面发展所不可缺少的,对于数学课发言同样很重要。一个思维活跃、肯于动脑、发言踊跃的学生,学起数学来定会得心应手,游刃有余。另外,想要出类拔萃的你一定要自觉地培养以下良好的学习习惯。①着重预习,学会自学预习是学生自学的开始,在小学阶段往往不那么重视,你会逐步尝到自觉寻求知识来解决问题的甜头,从而激发学习的兴趣,慢慢地就能自觉预习,主动提出难以理解的问题,为学习新知识打下基础。②专心听讲,乐于思考课堂45分钟最为关键哦!你要养成一边听讲、一边看书、一边思考的习惯,使自己的多种感官都参与活动,无论是课前、课内还是课后,都要字斟句酌地研究课本,多问几个为什么,从而加深对定义、定理、法则的理解。③规范作业,强化训练就书面练习来看,小学生往往重结果而轻过程,进入初中后,部分学生的作业不能独立思考,解题格式不规范,步骤混乱等不良现象。为此,你要从思想上认识规范作业的重要性,对那些不规范的现象及时予以纠正,养成自觉订正的好习惯。④及时小结,温故知新学习的过程一般可分为“学习”、“保持”、“再现”三个阶段,而保持和再现又是其中比较重要的阶段。如何去巩固运用所学的知识呢?一是要进行复习小结,及时再现当天或本单元所学的知识,培养他们运用联想、再现、追忆等方法同遗忘作斗争;二是积累资料进行整理复习的能力,如将平时作业、单元测试中技巧性强的、易错的题目及时收集成册——错题本,便于复习时参考,从而提高解题能力,巩固所学的知识。3.一个必备的能力计算能力是一项基本的数学能力,是一个人今后生活、学习所必须的基本素质之一。但是目前孩子们在计算中反映出来的情况令人担忧。孩子的计算能力不高,经常导致计算错误,从而直接影响了其它学科如物理、化学的学习。有些家长对计算能力的训练不是太重视,一直都以为是孩子粗心大意才会算错,其实计算题的训练能帮助孩子提高他的思维敏感力、思维的灵活性,同时在心理上更会提高孩子对学习数学的信心。因此,家长对训练提高孩子的计算能力应该有必要的重视初中数学与小学数学如何衔接许多初中的家长向我询问,为什么小学数学成绩很好,可一上初中孩子就感到非常不适应初中数学了,下面是老师自己对“初”--“小”衔接教学中的一点体会,谨以此文献给升入初中的学生!初一《代数》教材,涉及数、式、方程和不等式,这些内容与小学数学中的算术数、简易方程、算术应用题等知识有关,但初一数学内容比小学内容更为丰富,抽象,复杂,在教学方法上也不尽相同;而小学学生的数学学习习惯和学习方法与中学生应有的学习习惯也不尽一致,因此,在教学过程中必须注意中小学数学的衔接.一、内容上的衔接1.算术数与有理数小学数学是在算术数中研究问题的,而中学数学一开始就有有理数,因此,从算术数过渡到有理数是一大转折,为此,须抓住以下几点:(1)讲清楚具有相反意义的量,是引入负数的关键.这里,可以通过多举些学生熟悉的实际例子,使学生了解引入负数的必要性及负数的意义.例如,如何区别零上度和零下度这两个具有相反意义的量呢?又如,珠穆朗玛峰的海拔高度和吐鲁番盆地的海拔高度是具有相反意义的量等等,在教学中可以多举一些例子,让学生了解为了区别具有相反意义的量必须引入一种新的数——负数.(2)逐步加深对有理数的认识首先,让学生清楚地认识到有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,对有理数的概念的理解,运算的掌握就简便多了.其次,让学生清楚有理数的分类与小学的算术数相比只是多了负整数和负分数.(3)有理数的运算,其实是由两部分组成:小学学习过的运算加上中学学习过的“符号”确定,只要特别注意符号的确定,那么有理数的运算就不成为难点了.如:(-2)+(-4)先确定符号为“-”再把数字部分相加即可,即(-2)+(-4)=-(2+4)=-62.数与代数式从小学数学的特殊的、具体的数到中学的一般的、抽象的代数式,这是数学思维上的一次飞跃,因此,在教学时,要逐步引导学生过好这一关.(1)用字母表示数的必要性以学生在小学学过的用字母表示数的例子,如:加法交换律a+b=b+a;乘法交换律ab=ba及一些公式如速度公式v=s/t.正方形周长、面积公式l=4a,s=a2等,说明由字母表示数能简明、扼要地表达数量之间的关系.可以更方便地研究和解决问题.(2)加深对字母a的认识许多学生由于对字母a表示数的意义理解不透,经常错误地认为-a一定是负数,因此,在教学上必须帮助学生理解a的含义,知道a可能是负数,而-a不一定是负数等问题.首先让学生弄清楚符号“-”的三种作用.①运算符号,如5-3表示5减3,2-4表示2减4;②性质符号,如-1表示负1,5+(-3)表示5加上负3;③在某个数前面加上“-”号,表示该数的相反数,如-3表示3的相反数,-(-3)表示-3的相反数,-a表示a的相反数.然后再说明a表示有理数,可以是正数,可以是负数,亦可以是零.即包括符号和数字,这样,学生才能真正理解a,-a所包含的意义.(3)加强数学语言的训练及列代数式的训练如:a是正数表示为a>0,a是负数表示为a<0,某数a的2倍表示为2a等.3.算术解法与代数解法在小学,解应用题采用算术解法,而中学需用代数解法(列方程).算术解法是把未知量放在特殊地位,设法通过已知量求出未知量;而代数解法是把所求的量与已知量放在平等的地位,找出各量之间的等量关系,建立方程而求出未知量.另外,算术解法较强调套类型,而代数解法则重视灵活运用知识,培养分析问题和解决问题的能力,这是思维方法上的一大转折.但学生开始往往习惯于用算术解法,而对用代数解法不适应,不知道如何找相等关系.因此,在教学中必须做好这方面的衔接,让学生明白有些问题用算术解法是不方使的,最好用代数解法,只要找出相等关系,用等式表示出来就列出了方程,再利用解方程的方法,就可以求出未知数的值.二.教法上的衔接初一学生的思维方式仍保留着小学生那种以直观、形象思维为主的特点.因此,在教法上应注意研究小学的数学教学方法,吸取其中优点,针对初一学生的特点,改进教学方法.1.查缺补漏,搭好阶梯,注意新旧知识的衔接初一《代数》第一章“代数初步知识”是以小学数学中的代数知识为基础的.从用字母表示数一直到简易方程,在小学高年级数学课中占有相当大的比重,是对小学数学中的代数知识的比较系统的归纳与复习,但本章内容又是从初中代数学习的客观需要出发的,不是小学知识的简单重复.因此,在教学中应注意发挥本章承上启下的作用,搞好新旧知识的衔接.2.从具体到抽象,特殊到一般,因材施教,改进教法.(1)循序渐进学生进入中学后,需逐步发展抽象思维能力.但初一新生在小学听惯了详尽、细致、形象的讲解,如果刚一进入中学就遇到“急转弯”往往很不适应.因此,教学过程中,不能一下子讲得过多、过快、过于抽象、过于概括,而仍要尽量地采用一些实物教具,让学生看得清楚,听得明白,逐步向图形的直观、语言的直观和文字的直观过渡,最后向抽象思维过渡.例如:讲授相反数的概念可采用如下顺序②再观察这几组数字本身的特点:只有符号不同.③引导学生自行得出相反数的概念.(2)前后对比在初一代数的教学过程,恰当地运用对比,能使学生加快理解和掌握新知识.例如,在学习一元一次不等式和一元一次不等式组时,由于初一的不等式知识体系的安排大体与方程知识体系的安排相同.因此,在教学中,可把不等式与方程的意义、性质,不等式的解集与方程的解以及解一元一次不等式与解一元一次方程等对比着进行讲授,既说明它们的相同点,更要指出它们的不同点,揭示各自的特殊性.这样,有助于学生尽快掌握不等式的有关知识,同时避免与方程的有关知识混淆.(3)开拓思路初一学生考虑问题较单纯,不善于进行全面深入的思考,对一个问题的认识,往往注意了这一面,忽视了另一面,只看到现象,看不到本质.这种思维上的不成熟给科目成倍增加、知识内容明显加深的初中阶段的教学带来了困难.因此,在教学中,要多给学生发表见解的机会,细心捉摸其思考问题的方法,分析其产生错误的原因,启发学生遇到问题要认真分析,不要轻易下结论.例如:学生往往误认为2a>a,理由很简单:2个a显然大于1个a,忽视了a包含的意义,a表示有理数,可以是正数,负数或零,从而造成了错误.三.学习习惯与学习方法的衔接1.继续保持良好的学习方法和习惯刚从小学升上初一,小学里的许多良好的学习方法和习惯应该继续保持.如:上课坐姿端正,答题踊跃,声音响亮,积极举手发言等.2.指导科学的学习方法,培养良好的学习习惯初一学生基于小学的学习习惯和方法,认为学数学就是做作业,多做练习,课本成了“习题集”.因此,在教学过程中,须逐步培养学生自学能力,指导学生预习、复习和小结,适当选读课外读物,培养兴趣,开阔视野.最后,因为小学阶段学科少,内容浅,而到了中学,学习科目倍增,内容不断加深,故此,在初一的数学教学中必须注意中小学数学的衔接,指导学生顺利由小学数学过渡到中学数学.初中数学与小学数学学习有什么区别很多学生在小学时数学成绩很好,但上了初中之后会渐渐被其他的同学超过,并且,越往高年级表现越明显。这其中的原因并不是一个简单的没有好好学的问题。其实,主要是因为很多学生在上初中之后没有很好地使因初中数学的学习方法和思维习惯。在小学数学的学习中,我们大多依靠记忆来掌握一些公式、题型、模版,在没有完全理解一个公式或定理的情况下仍然能够作对题,取得一个很不错的卷面成绩,学生和家长也极有可能因此而忽略了这种学习方法的先天缺陷:它让学生的学习力“打折”了。中学数学课本里渗透了函数的思想,方程的思想,数形结合的思想,逻辑划分的思想,等价转化的思想,类比归纳的思想,介绍了配方法、消元法、换元法、待定系数法、反证法、数学归纳法等。要学好这些东西,光靠记忆是远远不够的。只有理解这些思想和方法的原理和依据,并通过大量的练习,掌握运用这些思想和方法解决数学问题的步骤和技巧,才能将初中的数学学好,同时也能保证在以后的数学学习中游刃有余。那么,在具体的学习过程中如何去实现之一目标呢?我认为,最主要的、也是最通俗的、同时还是大家最不容易做好的就是课前预习、上课专心听讲、课后认真复习。这种最普通的方法人人都听说过,但真正把它当真的恐怕没有几个。做好课前预习可以帮助你在上课的时候节省很多读题和熟悉课程内容的时间,这样你就可以紧跟老师的脚步,不至于走神。上课认真听讲这一部最难了。在课堂上有很多因素会影响你的听课质量,比如说,同桌想和你说说昨晚他遇到的好玩的事情、老师讲课水平不是很高或者你并不喜欢这位老师的风格之类的。课堂上的小插曲可以通过自己的努力去克服,专心致志就行了。最麻烦的还是对老师或者他的讲课方式有意见,这样会直接打击学生的学习积极性。如何去适应自己不感兴趣的老师的讲课?最重要的是多和老师接触、沟通,试着去了解他,你会发现其实老师人很好,并且他一