12复习回顾:双曲线的标准方程:形式一:(焦点在x轴上,(-c,0)、(c,0)))0,0(12222babyax1F2F形式二:(焦点在y轴上,(0,-c)、(0,c))其中)0,0(12222babxay1F2F222bac双曲线的图象特点与几何性质到现在仍是一个谜?现在就用方程来探究一下!类似于椭圆几何性质的研究.32、对称性一、研究双曲线的简单几何性质1、范围22221,,≥≥≥≤xxaaxaxa即关于x轴、y轴和原点都是对称.x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心.xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)22221(0,0)xyabab另外,22220xyab可知并夹在两相交直线之间.(如图)(下一页)顶点43、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点xyo-b1B2Bb1A2A-aa如图,线段叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长.2A1A2B1B(2)(3)实轴与虚轴等长的双曲线叫等轴双曲线.22(0)xymm顶点是12(,0)(,0)AaAa、(下一页)渐近线54、渐近线1A2A1B2Bxyobyxabyxaab利用渐近线可以较准确的画出双曲线的草图(2)渐近线对双曲线的开口的影响(3)动画演示点在双曲线上情况双曲线上的点与这两直线有什么位置关系呢?⑴双曲线22221xyab(0,0)ab的渐近线为byxa注:等轴双曲线22(0)xymm的渐近线为yx(动画演示情况)(下一页)离心率如何记忆双曲线的渐近线方程?65、离心率e是表示双曲线开口大小的一个量,e越大开口越大(动画演示)⑴定义:双曲线的焦距与实轴长的比cea,叫做双曲线的离心率.⑵e的范围:ca0e1⑶e的含义:2222()11bcaceaaa∴当(1,)e时,(0,)ba,且e增大,ba也增大.e增大时,渐近线与实轴的夹角增大.同样可以形象地理解焦点离开中心的程度.另外(4)等轴双曲线的离心率e=?2,反过来也成立.∵222,ceabca⑸在、、、abce四个参数中,知二求二.7例1求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐进线方程.可得实半轴长a=4,虚半轴长b=3焦点坐标为(0,-5)、(0,5)45ace离心率xy34渐进线方程为解:把方程化为标准方程221169yx8例2.4516线和焦点坐标程,并且求出它的渐近出双曲线的方轴上,中心在原点,写焦点在,,离心率离是已知双曲线顶点间的距xe思考:一个双曲线的渐近线的方程为:,它的离心率为.xy435543或xy43渐近线方程为)0,10(),0,10(21FF焦点1366422yx解:922832xy练习(1):2214xy(2):的渐近线方程为:的实轴长虚轴长为_____顶点坐标为,焦点坐标为_________离心率为_______2xy4280,240,63242244xy的渐近线方程为:2214xy的渐近线方程为:的渐近线方程为:2244xy2xy2xy2xy102231323916xy例:求下列双曲线的标准方程:(1)与双曲线有相同渐近线,且过点,;220332xyyx渐近线方程可化为22094xy设所求双曲线方程为8114294则,解得22222194188xyxy故所求双曲线方程为即2210916xy解:设所求双曲线方程为912916则,2219164xy故所求双曲线方程为22191644xy即14解得292132yx渐近线方程为:且过点,112231322164xy例:求下列双曲线的标准方程:(3)与双曲线有相同焦点,且过点,;3250解:焦点为,,22102020xymmm设所求双曲线方程为184120mm则810m解得或(舍)221128xy故所求双曲线方程为12(1)顶点间距离为6,渐近线方程为32yx(2)求与双曲线2222xy有公共渐近线,且过点(2,2)M的双曲线方程。练习:求出下列双曲线的标准方程22194yx2241981xy22124yx13(4)双曲线与椭圆2211664xy有相同的焦点,它的一条渐近线为yx,则双曲线的方程为()A.2296xyB.22160yxC.2280xyD.2224yx(3)已知双曲线的离心率为2,焦点是(4,0),(4,0),则双曲线方程为()A.221412xyB.221124xyC.221106xyD.221610xy14例3:已知双曲线的中心在原点,焦点在坐标轴上,离心率为2,且过点(4,10).⑴求此双曲线的方程;⑵若点(3,)Mm在此双曲线上,12,FF是双曲线的焦点,求证:12FMFM.226xy15课堂练习:2.求中心在原点,对称轴为坐标轴,经过点P(1,-3)且离心率为的双曲线标准方程.21.过点(1,2),且渐近线为34yx的双曲线方程是________.2216955yx22188yx163.求与椭圆xy221681有共同焦点,渐近线方程为xy30的双曲线方程。解:椭圆的焦点在x轴上,且坐标为),(,,022)022(21FF双曲线的焦点在轴上,且xc22双曲线的渐近线方程为xy33bacabab33822222,而,解出2622ba,双曲线方程为xy2262117关于x轴、y轴、原点对称图形方程范围对称性顶点离心率1(0)xyabab2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)100yx(a,b)ab2222≥≤yayaxR,或关于x轴、y轴、原点对称(1)ceea渐进线ayxb..yB2A1A2B1xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c)≥≤xaxayR,或(1)ceeabyxa18例2双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12m,上口半径为13m,下口半径为25m,高55m.选择适当的坐标系,求出此双曲线的方程(精确到1m).A′A0xC′CB′By131225(学习课本例4)