专题15-应用题(教师版)----共25页

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1专题15应用题一、选择题1.(2017玉林崇左第10题)如图,一艘轮船在A处测得灯塔P位于其北偏东60°方向上,轮船沿正东方向航行30海里到达B处后,此时测得灯塔P位于其北偏东30°方向上,此时轮船与灯塔P的距离是()A.153海里B.30海里C.45海里D.303海里【答案】B.【解析】根据题意,得∠BAD=30°,BD=15海里,∴∠PBD=60°,则∠DPB=30°,BP=15×2=30(海里),故选B.考点:解直角三角形的应用﹣方向角问题;勾股定理的应用.二、填空题1.(2017湖北黄石市第14题)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:2≈1.41,3≈1.73)2【答案】137.【解析】试题分析:设AB=x米,在Rt△ABC中,∵∠ACB=45°,∴BC=AB=x米,则BD=BC+CD=x+100(米),在Rt△ABD中,∵∠ADB=30°,∴tan∠ADB=ABBD=33,即100xx=33,解得:x=50+503≈137,即建筑物AB的高度约为137米.故答案为:137.考点:解直角三角形的应用﹣仰角俯角问题.2.(2017湖北荆门市第16题)已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,则派派的年龄为岁.【答案】12.【解析】设今年派派的年龄为x岁,则妈妈的年龄为(36﹣x)岁,根据题意得:36﹣x+5=4(x+5)+1,解得:x=4,∴36﹣x﹣x=28,∴40﹣28=12(岁).故答案为:12.考点:一元一次方程的应用.4.(2017辽宁葫芦岛第16题)一艘货轮又西向东航行,在A处测得灯塔P在它的北偏东60°方向,继续航行到达B处,测得灯塔P在正南方向4海里的C处是港口,点A,B,C在一条直线上,则这艘货轮由A到B航行的路程为海里(结果保留根号).3【答案】(4﹣4)【解析】考点:解直角三角形的应用、勾股定理的应用5.(2017江苏泰州市第14题)小明沿着坡度i为1:的直路向上走了50m,则小明沿垂直方向升高m.【答案】25.试题分析:如图,过点B作BE⊥AC于点E,∵坡度:i=1:3,∴tan∠A=1:3=33,∴∠A=30°,∵AB=50m,∴BE=12AB=25(m).∴他升高了25m.考点:解直角三角形的应用.三、解答题1.(2017贵州遵义市22题)乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;4(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1m,参考数据:3≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)【答案】(1).168m;(2).32m.【解析】(1)由题意知∠ABP=30°、AP=97,∴AB=979797368tantan3033APABPcm.答:主桥AB的长度约为168m;(2)∵∠ABP=30°、AP=97,∴PB=2PA=194,又∵∠DBC=∠DBA=90°、∠PBA=30°,∴∠DBP=∠DPB=60°,∴△PBD是等边三角形,∴DB=PB=194,在Rt△BCD中,∵∠C=80°36′,∴BC=194tantan8036DBC≈32,答:引桥BC的长约为32m.考点:解直角三角形的应用﹣仰角俯角问题.2.(2017贵州遵义市25题)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型5车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放8240aa辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.【答案】问题1:A、B两型自行车的单价分别是70元和80元;问题2:a的值为15.【解析】问题1[来源:Zxxk.Com]设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,1500a×1000+12008240aa×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15.考点:分式方程的应用;二元一次方程组的应用.3.(2017辽宁营口第22题)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C的船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确的0.1海里,参考数据21.41,31.73)6【答案】船在航行过程中与码头C的最近距离是13.7海里.【解析】由题意可知:船在航行过程中与码头C的最近距离是CE,AB=30×4060=20,∵∠NAC=45°,∠NAB=75°,∴∠DAB=30°,∴BD=12AB=10,由勾股定理可知:AD=103∵BC∥AN,∴∠BCD=45°,∴CD=BD=10,∴AC=103+10∵∠DAB=30°,∴CE=12AC=53+5≈13.7答:船在航行过程中与码头C的最近距离是13.7海里考点:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.4.(2017辽宁营口第24题)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)7完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.【答案】(1)y=40+2x(1≤x≤10);(2)218403680015,80446080510xxWxx,第5天,46000元.【解析】试题解析:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);(2)当1≤x≤5时,W=(2920﹣2000)×(40+2x)=1840x+36800,∵1840>0,∴W随x的增大而增大,∴当x=5时,W最大值=1840×5+36800=46000;当5<x≤10时,W=[2920﹣2000﹣20(40+2x﹣50)]×(40+2x)=﹣80(x﹣4)2+46080,此时函数图象开口向下,在对称轴右侧,W随着x的增大而减小,又天数x为整数,∴当x=6时,W最大值=45760元.∵46000>45760,∴当x=5时,W最大,且W最大值=46000元.综上所述:218403680015,80446080510xxWxx.考点:二次函数的应用;分段函数.5.(2017湖北黄石市第23题)小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律:8①该蔬菜的销售价P(单位:元/千克)与时间x(单位:月份)满足关系:P=9﹣x;②该蔬菜的平均成本y(单位:元/千克)与时间x(单位:月份)满足二次函数关系210yaxbx,已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克.(1)求该二次函数的解析式;(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L(单位:元/千克)最大?最大平均利润是多少?(注:平均利润=销售价﹣平均成本)【答案】(1)213104yxx;(2)4月份的平均利润L最大,最大平均利润是3元/千克.【解析】试题解析:(1)将x=4、y=2和x=6、y=1代入210yaxbx,得:164102366101abab,解得:143ab,∴213104yxx;(2)根据题意,知L=P﹣y=9﹣x﹣(213104xx)=21(4)34x,∴当x=4时,L取得最大值,最大值为3.答:4月份的平均利润L最大,最大平均利润是3元/千克.考点:二次函数的应用;最值问题;二次函数的最值.6.(2017山东潍坊第20题)(本题满分8分)如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60,在B处测得四楼顶部点E的仰角为30,14AB米.求居民楼的高度(精确到0.1米,参考数据:3≈1.73).【答案】18.4米9【解析】[来源由题意得:MC′=MC﹣CC′=2.5﹣1.5=1米,∴DC′=5x+1,EC′=4x+1,在Rt△DC′A′中,∠DA′C′=60°,∴C′A′='3tan603DC(5x+1),在Rt△EC′B′中,∠EB′C′=30°,∴C′B′='=3tan30EC(4x+1),∵A′B′=C′B′﹣C′A′=AB,∴3(4x+1)﹣33(5x+1)=14,解得:x≈3.17,则居民楼高为5×3.17+2.5≈18.4米.考点:解直角三角形的应用﹣仰角俯角问题7.(2017山东潍坊第21题)(本题满分8分)某蔬菜加工公司先后两批次收购蒜薹(tai)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨,这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?【答案】(1)第一批购进蒜薹20吨,第二批购进蒜薹80吨(2)m=75时,w有最大值为85000元【解析】试题分析:(1)设第一批购进蒜薹x吨,第二批购进蒜薹y吨.构建方程组即可解决问题.(2)设精加工m吨,总利润为w元,则粗加工吨.由m≤3,解得m≤75,利润w=1000m+400=600m+40000,构建一次函数的性质即可解决问题.试题解析:(1)设第一批购进蒜薹x吨,第二批购进蒜薹y吨.由题意10040001000160000xyxy,解得2080xy,答:第一批购进蒜薹20吨,第二批购进蒜薹80吨.10(2)设精加工m吨,总利润为w元,则粗加工吨.由m≤3,解得m≤75,利润w=1000m+400=600m+40000,∵600>0,∴w随m的增大而增大,∴m=75时,w有最大值为85000元.考点:1、一次函数的应用;2、二元一次方程组的应用8.(2017山东潍坊第23题)(本题满分9

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功