专题14-阅读理解问题(教师版)---共12页

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1专题14阅读理解问题一、选择题1.(2017山东潍坊第11题)定义x表示不超过实数x的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数的图象如图所示,则方程221xx的解为().A.0或2B.0或2C.1或2D.2或2【答案】B【解析】考点:1、解一元二次方程﹣因式分解法;2、实数大小比较;3、函数的图象2.(2017浙江温州第10题)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧12PP,23PP,34PP,…得到斐波那契螺旋线,然后顺次连结12PP,23PP,34PP,…得到螺旋折线(如图),已知点1P(0,1),2P(1,0),3P(0,1),则该折线上的点9P的坐标为()A.(6,24)B.(6,25)C.(5,24)D.(5,25)2xyP6P5P2P4P3P1O(第10题图)【答案】B.【解析】考点:点的坐标.3.(2017湖南永州第10题)已知从n个人中,选出m个人按照一定的顺序排成一行,所有不同的站位方法有n×(n-1)×…×(n-m+1)种.现某校九年级甲、乙、丙、丁4名同学和1位老师共5人在毕业前合影留念(站成一行),若老师站在中间,则不同的站位方法有()A.6种B.20种C.24种D.120种【答案】D【解析】试题解析:5个人中选出4个,不同的站位方法有5×(5-1)×(5-2)×(5-4+1)=120(种),故选D.考点:推理二、填空题1.(2017四川乐山市第16题)对于函数,我们定义(为常数).例如,则.已知:.(1)若方程有两个相等实数根,则m的值为;(2)若方程有两个正数根,则m的取值范围为.3【答案】(1);(2)m≤且m≠.【解析】两个正数根,∴,解得:m≤且m≠.故答案为:m≤且m≠.考点:抛物线与x轴的交点;根的判别式;根与系数的关系;新定义;综合题.三、解答题1.(2017湖南益阳市第21题)(本小题满分12分)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为,求直线MN的表达式(用含、的代数式表示);(3)在抛物线的图象上有一对“互换点”A、B,其中点A在反比例函数的图象上,直线AB经过点P(,),求此抛物线的表达式.【答案】(1)不一定(2)直线MN的表达式为y=﹣x+m+n(3)抛物线的表达式为y=x2﹣2x﹣1【解析】试题分析:(1)设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,于是得到结论;[来(2)把M(m,n),N(n,m)代入y=cx+d,即可得到结论;(3)设点A(p,q),则,由直线AB经过点P(,),得到p+q=1,得到q=﹣1或q=2,将这一对“互换点”代入y=x2+bx+c得,于是得到结论.4试题解析:(1)不一定,设这一对“互换点”的坐标为(a,b)和(b,a).[来源:Zxxk.Com]①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,即(a,b)和(b,a)都在反比例函数(k≠0)的图象上;科§网](3)设点A(p,q),则,∵直线AB经过点P(,),由(2)得,∴p+q=1,∴,解并检验得:p=2或p=﹣1,∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入y=x2+bx+c得,∴解得,∴此抛物线的表达式为y=x2﹣2x﹣1.考点:1、反比例函数图象上点的坐标特征;2、待定系数法求一次函数解析式;3、待定系数法求二次函数解析式2.(2017湖南永州第25题)(本小题满分12分)如图,已知抛物线y=ax2+bx+1经过A(-1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1·k2=-1.解决问题:①若直线y=3x-1与直线y=mx+2互相垂直,求m的值;5②是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.【答案】(1)y=21x2+21x+1.(2)①m=31;②P(6,-14)或(4,-5),(3)55.【解析】试题解析:(1)根据题意得:1101baba解得2121ba∴y=21x2+21x+1.(2)①3m=-1,∴m=31;②设PA的表达式为y=kx+c,过A(-1,0),B(1,1)两点的直线表达式为2121xy,显然过点P的直角边与AB垂直,∴k=-2,∴y=-2x+c.若∠PAB=90°,把A(-1,0)代入得0=-2×(-1)+c,解得c=-2,∴y=-2x-2,点P是直线PA与抛物线的交点,联立方程组:22121212xyxxy解得0111yx14622yx∴P(6,-14);若∠PBA=90°,把B(1,1)代入y=-2x+c,得1=-2×1+c,解得c=3,∴y=-2x+3,点P是直线PB与抛物线的6交点,联立方程组:32121212xyxxy解得1111yx5422yx∴P(4,-5).综上所述,存在点P(6,-14)或(4,-5),使得△PAB是以AB为直角边的直角三角形.距离的最大值是55.考点:二次函数综合题3.(2017贵州贵阳市第24题)(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【答案】(1)AD=AB+DC;(2)AB=AF+CF,证明见解析;(3)AB=23(CF+DF),证明见解析.【解析】试题分析:(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;7(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB∽△GEC,根据相似三角形的性质得到AB=23CG,计算即可.试题解析:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,BAFFAEBFECBECE,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;在△AEB和△GEC中,BAEGAEBGECBECE,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=23(CF+DF),证明如下:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴ABBECGEC=23,即AB=23CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=23CG=23(CF+DF).8考点:1.全等三角形的判定和性质;2..相似三角形的判定和性质.5.(2017陕西省第25题)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究[来源:Z§xx§k.Com](2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE⊥AB交AB于点E,又测得DE=8m.[。X。K]请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)9【答案】(1)43;(2)PQ=122;(3)喷灌龙头的射程至少为19.71米.【解析】在Rt△AOD中,由勾股定理解得:r=13根据三角形面积计算高MN的长,证明△ADC∽△ANM,列比例式求DC的长,确定点O在△AMB内部,利用勾股定理计算OM,则最大距离FM的长可利用相加得出结论.试题解析:(1)如图1,过O作OD⊥AC于D,则AD=12AC=12×12=6,∵O是内心,△ABC是等边三角形,∴∠OAD=12∠BAC=12×60°=30°,在Rt△AOD中,cos∠OAD=cos30°=ADOA,∴OA=6÷32=43,故答案为:43;(2)存在,如图2,连接AC、BD交于点O,连接PO并延长交BC于Q,则线段PQ将矩形ABCD的面积平分,∵点O为矩形ABCD的对称中心,∴CQ=AP=3,过P作PM⊥BC于点,则PM=AB=12,MQ=18﹣3﹣3=12,由勾股定理得:PQ=22PMMQ=221212=122;(3)如图3,作射线ED交AM于点C.∵AD=DB,ED⊥AB,AB是劣弧,∴AB所在圆的圆心在射线DC上,假设圆心为O,半径为r,连接OA,则OA=r,OD=r﹣8,AD=12AB=12,在Rt△AOD中,r2=122+(r﹣8)2,解得:r=13,∴OD=5,过点M作MN⊥AB,垂足为N,∵S△ABM=96,AB=24,∴12AB•MN=96,12×24×MN=96,∴MN=8,NB=6,AN=18,∵CD∥MN,∴△ADC∽△ANM,∴DCADMNAN,∴12818DC,∴DC=163,∴OD<CD,∴点O在△AMB内部,∴连接MO并延长交AB于点F,则MF为草坪上的点到M点的最大距离,∵在AB上任取一点异于点F的点G,连接GO,GM,∴MF=OM+OF=OM+OG>MG,即MF>MG,过O作OH⊥MN,垂足为H,则OH=DN=6,MH=3,∴OM=22MHOH=2236=35,∴MF=OM+r=35+13≈19.71(米).答:喷灌龙头的射程至少为19.71米.10考点:圆的综合题;最值问题;存在型;阅读型;压轴题.6.(2017江苏泰州市第25题)阅读理解:如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功