§8.6立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量:在空间直线l上任取两点A,B,则称AB→为直线l的方向向量.平面的法向量:如果直线l垂直于平面α,那么把直线l的方向向量叫作平面α的法向量.2.用向量证明空间中的平行关系(1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.(2)设直线l的方向向量为v,与平面α共面的两个不共线向量v1和v2,则l∥α或lα⇔存在两个实数x,y,使v=xv1+yv2.(3)设直线l的方向向量为v,平面α的法向量为u,则l∥α或lα⇔v⊥u.(4)设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.3.用向量证明空间中的垂直关系(1)设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.(2)设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.(3)设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.(×)(2)平面的单位法向量是唯一确定的.(×)(3)若两平面的法向量平行,则两平面平行.(×)(4)若两直线的方向向量不平行,则两直线不平行.(√)(5)若a∥b,则a所在直线与b所在直线平行.(×)(6)若空间向量a平行于平面α,则a所在直线与平面α平行.(×)2.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则()A.l1∥l2B.l1⊥l2C.l1与l2相交但不垂直D.以上均不正确答案B解析a·b=-12+36-24=0,故a⊥b,即l1⊥l2选B.3.已知平面α内有一点M(1,-1,2),平面α的一个法向量为n=(6,-3,6),则下列点P中,在平面α内的是()A.P(2,3,3)B.P(-2,0,1)C.P(-4,4,0)D.P(3,-3,4)答案A解析逐一验证法,对于选项A,MP→=(1,4,1),∴MP→·n=6-12+6=0,∴MP→⊥n,∴点P在平面α内,同理可验证其他三个点不在平面α内.4.若A(0,2,198),B(1,-1,58),C(-2,1,58)是平面α内的三点,设平面α的法向量n=(x,y,z),则x∶y∶z=________.答案2∶3∶(-4)5.已知AB→=(1,5,-2),BC→=(3,1,z),若AB→⊥BC→,BP→=(x-1,y,-3),且BP⊥平面ABC,则实数x,y,z分别为______________.答案407,-157,4解析由题意知,BP→⊥AB→,BP→⊥BC→.所以AB→·BC→=0,BP→·AB→=0,BP→·BC→=0,即1×3+5×1+-2×z=0,x-1+5y+-2×-3=0,3x-1+y-3z=0,解得,x=407,y=-157,z=4.题型一证明平行问题例1(2013·浙江改编)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.证明:PQ∥平面BCD.思维启迪证明线面平行,可以利用判定定理先证线线平行,也可利用平面的法向量.证明方法一如图,取BD的中点O,以O为原点,OD、OP所在射线为y、z轴的正半轴,建立空间直角坐标系Oxyz.由题意知,A(0,2,2),B(0,-2,0),D(0,2,0).设点C的坐标为(x0,y0,0).因为AQ→=3QC→,所以Q34x0,24+34y0,12.因为M为AD的中点,故M(0,2,1).又P为BM的中点,故P0,0,12,所以PQ→=34x0,24+34y0,0.又平面BCD的一个法向量为a=(0,0,1),故PQ→·a=0.又PQ⃘平面BCD,所以PQ∥平面BCD.方法二在线段CD上取点F,使得DF=3FC,连接OF,同证法一建立空间直角坐标系,写出点A、B、C的坐标,设点C坐标为(x0,y0,0).∵CF→=14CD→,设F点坐标系(x,y,0)则(x-x0,y-y0,0)=14(-x0,2-y0,0)∴x=34x0y=24+34y0∴OF→=(34x0,24+34y0,0)又由证法一知PQ→=(34x0,24+34y0,0),∴OF→=PQ→,∴PQ∥OF.又PQ⃘平面BCD,OF平面BCD,∴PQ∥平面BCD.思维升华用向量证明线面平行的方法有(1)证明该直线的方向向量与平面的某一法向量垂直;(2)证明该直线的方向向量与平面内某直线的方向向量平行;(3)证明该直线的方向向量可以用平面内的两个不共线的向量线性表示.如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.求证:PB∥平面EFG.证明∵平面PAD⊥平面ABCD且ABCD为正方形,∴AB、AP、AD两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系Axyz,则A(0,0,0)、B(2,0,0)、C(2,2,0)、D(0,2,0)、P(0,0,2)、E(0,0,1)、F(0,1,1)、G(1,2,0).∴PB→=(2,0,-2),FE→=(0,-1,0),FG→=(1,1,-1),设PB→=sFE→+tFG→,即(2,0,-2)=s(0,-1,0)+t(1,1,-1),∴t=2,t-s=0,-t=-2,解得s=t=2.∴PB→=2FE→+2FG→,又∵FE→与FG→不共线,∴PB→、FE→与FG→共面.∵PB⃘平面EFG,∴PB∥平面EFG.题型二证明垂直问题例2如图所示,正三棱柱ABC—A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.思维启迪证明线面垂直可以利用线面垂直的定义,即证线与平面内的任意一条直线垂直;也可以证线与面的法向量平行.证明方法一设平面A1BD内的任意一条直线m的方向向量为m.由共面向量定理,则存在实数λ,μ,使m=λBA1→+μBD→.令BB1→=a,BC→=b,BA→=c,显然它们不共面,并且|a|=|b|=|c|=2,a·b=a·c=0,b·c=2,以它们为空间的一个基底,则BA1→=a+c,BD→=12a+b,AB1→=a-c,m=λBA1→+μBD→=λ+12μa+μb+λc,AB1→·m=(a-c)·λ+12μa+μb+λc=4λ+12μ-2μ-4λ=0.故AB1→⊥m,结论得证.方法二如图所示,取BC的中点O,连接AO.因为△ABC为正三角形,所以AO⊥BC.因为在正三棱柱ABC—A1B1C1中,平面ABC⊥平面BCC1B1,所以AO⊥平面BCC1B1.取B1C1的中点O1,以O为原点,以OB→,OO1→,OA→为x轴,y轴,z轴建立空间直角坐标系,则B(1,0,0),D(-1,1,0),A1(0,2,3),A(0,0,3),B1(1,2,0).设平面A1BD的法向量为n=(x,y,z),BA1→=(-1,2,3),BD→=(-2,1,0).因为n⊥BA1→,n⊥BD→,故n·BA1→=0,n·BD→=0⇒-x+2y+3z=0,-2x+y=0,令x=1,则y=2,z=-3,故n=(1,2,-3)为平面A1BD的一个法向量,而AB1→=(1,2,-3),所以AB1→=n,所以AB1→∥n,故AB1⊥平面A1BD.思维升华用向量证明垂直的方法(1)线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.(2)线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.(3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.(1)求证:CM∥平面PAD;(2)求证:平面PAB⊥平面PAD.证明以C为坐标原点,CB所在直线为x轴,CD所在直线为y轴,CP所在直线为z轴建立如图所示的空间直角坐标系Cxyz,∵PC⊥平面ABCD,∴∠PBC为PB与平面ABCD所成的角,∴∠PBC=30°.∵PC=2,∴BC=23,PB=4.∴D(0,1,0),B(23,0,0),A(23,4,0),P(0,0,2),M(32,0,32),∴DP→=(0,-1,2),DA→=(23,3,0),CM→=(32,0,32),(1)令n=(x,y,z)为平面PAD的一个法向量,则DP→·n=0,DA→·n=0,即-y+2z=0,23x+3y=0,∴z=12y,x=-32y,令y=2,得n=(-3,2,1).∵n·CM→=-3×32+2×0+1×32=0,∴n⊥CM→,又CM⃘平面PAD,∴CM∥平面PAD.(2)取AP的中点E,则E(3,2,1),BE→=(-3,2,1).∵PB=AB,∴BE⊥PA.又∵BE→·DA→=(-3,2,1)·(23,3,0)=0,∴BE→⊥DA→,∴BE⊥DA,又PA∩DA=A,∴BE⊥平面PAD,又∵BE平面PAB,∴平面PAB⊥平面PAD.题型三解决探索性问题例3(2012·福建)如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.思维启迪利用向量法建立空间直角坐标系,将几何问题进行转化;对于存在性问题可通过计算下结论.(1)证明以A为原点,AB→,AD→,AA1→的方向分别为x轴,y轴,z轴的正方向建立空间直角坐标系(如图).设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),Ea2,1,0,B1(a,0,1),故AD1→=(0,1,1),B1E→=-a2,1,-1,AB1→=(a,0,1),AE→=a2,1,0.∵AD1→·B1E→=-a2×0+1×1+(-1)×1=0,∴B1E⊥AD1.(2)解假设在棱AA1上存在一点P(0,0,z0).使得DP∥平面B1AE,此时DP→=(0,-1,z0).又设平面B1AE的法向量n=(x,y,z).∵n⊥平面B1AE,∴n⊥AB1→,n⊥AE→,得ax+z=0,ax2+y=0.取x=1,得平面B1AE的一个法向量n=1,-a2,-a.要使DP∥平面B1AE,只要n⊥DP→,有a2-az0=0,解得z0=12.又DP⃘平面B1AE,∴存在点P,满足DP∥平面B1AE,此时AP=12.思维升华对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证.另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.如图所示,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.(1)证明连接BD,设AC交BD于O,则AC⊥BD.由题意知SO⊥平面ABCD.以O为坐标原点,OB→,OC→,OS→分别为x轴、y轴、z轴正方向,建立空间直角坐标系如图.设底面边长为a,则高SO=62a,于是S0,0,62a,D-22a,0,0,B22a,0,0,C0,22a,0,OC→=0,22a,0,SD→=-22a,0,-62a,则OC→·SD→=0.故OC⊥SD.从而AC⊥SD.(2)解棱SC上存在一点E使BE∥平面PAC.理由如下:由已知条件知DS→是平面PAC的一个法向量,且DS→=2