WhatisaTheory?GillesDowekINRIA-Roquenourt,BP105,78153LeChesnayCedex,Frane.Gilles.Dowekinria.fr~dowekAbstrat.Dedutionmoduloisawaytoexpressatheoryusingompu-tationrulesinsteadofaxioms.Wepresentinthispaperanextensionofdedutionmodulo,alledPolarizeddedutionmodulo,wheresomerulesanonlybeusedatpositiveourrenes,whileothersanonlybeusedatnegativeones.Weshowthatalltheoriesinpropositionalalulusanbeexpressedinthisframeworkandthatutsanalwaysbeeliminatedwithsuhtheories.Mathematialproofsarealmostneverbuiltinpurelogi,butbesidesthededutionrulesandthelogialaxiomsthatexpressthemeaningoftheonnetorsandquanti ers,theyusesomethingelse-atheory-thatexpressesthemeaningoftheothersymbolsofthelanguage.Examplesoftheoriesareequationaltheories,arithmeti,typetheory,settheory,...Theusualde nitionofatheory,asasetofaxioms,issuÆientwhenoneisinterestedintheprovabilityrelation,but,aswell-known,itisnotwhenoneisinterestedinthestrutureofproofsandinthetheoremprovingproess.Forinstane,weande neatheorywiththeaxiomsa=bandb=(wherea,bandareindividualsymbols)andprovethepropositiona=.However,wemayalsode nethistheorybytheomputationrulesa !band !bandthenapropositiont=uisprovableiftanduhavethesamenormalformusingtheseomputationrules.Theadvantagesofthispresentationarenumerous.{Weknowthatallthesymbolsourringinaproofoft=umustourintorinuoroneoftheirreduts.Forinstane,thesymboldneednotbeusedinaproofofa=.Wegetthiswayanalytiityresults.{Inautomatedtheoremproving,weanusethiskindofresultstoreduethesearhspae.Infat,inthisase,wejustneedtoreduedeterministiallythetermsandhektheidentityoftheirnormalforms.Wegetthiswaydeisionsalgorithms.{Sinethenormalformofthepropositiona=disb=dandbanddaredistint,thepropositiona=disnotprovableinthistheory.Wegetthiswayindependeneresultsand,inpartiular,onsistenyresults.{Inaninterativetheoremprover,weanreduethepropositiontobeproved,beforewedisplayittotheuser.Thisway,theuserisrelievedfromdoingtrivialomputations.Tode neatheorywithomputationrules,notanysetofrulesisonvenient.Forinstane,ifinsteadoftakingtherulesa !b, !bwetaketherulesb !a,b !,welosethepropertythatapropositiont=uisprovableiftanduhaveaommonredut.Tobeonvenient,arewritesystemmustbeon uent.Con uene,andsometimesalsotermination,areneessarytohaveanalytiityresults,ompletenessofproofsearhmethods,independeneresults,...Whenwehaverulesrewritingpropositionsdiretly,forinstanex y=0 !x=0_y=0on ueneisnotsuÆientanymoretohavetheseresults,bututeliminationisalsorequired[7,4℄.Con ueneanduteliminationarerelated.Forinstane,withthenonon uentsystemb !a,b !,weanprovethepropositiona=introduingautonthepropositionb=b,but,beausetherewritesystemisnoton uent,thisutannotbeeliminated.Con ueneanthusbeseenasaspeialaseofuteliminationwhenonlytermsarerewritten[6℄,butinthegeneralase,on ueneisnotasuÆientonditionforutelimination.Computationrulesarenottheonlyalternativetoaxioms.Anotheroneistoaddnonlogialdedutionrulestoprediatelogieithertakinganintrodutionandeliminationrulefortheabstrationsymbolinvariousformulationsofsettheory[15,2,10,1,3,9℄orinterpretinglogiprogramsorde nitionsasdedutionrules[11,16,17,13℄orinamoregeneralsetting[14℄.Nonlogialdedutionrulesandomputationruleshavesomesimilarities,butwebelievethatomputationruleshavesomeadvantages.Forinstane,nonlogialdedutionrulesmayblurthenotionofutinnaturaldedutionandextraproofredutionruleshavetobeadded(see,forinstane,[5℄).Alsowithsomenonlogialdedutionrules,theontradition?mayhaveautfreeproofandthusonsistenyisnotalwaysaonsequeneofutelimination.Inontrast,thenotionofut,theproofre-dutionrulesandthepropertiesofutfreeproofsremaintheusualoneswithomputationrules.Whenatheoryisgivenbyasetofaxioms,wesometimeswantto ndanalternativewaytopresentitwithomputationrules,insuhawaythatuteliminationholds.Fromutelimination,weandedueanalytiityresults,on-sistenyandvariousindependeneresults,ompletenessofproofsearhmethodsandinsomeasesdeisionalgorithms.Manytheorieshavebeenpresentedinsuhaway,inludingvariousequationaltheories,severalpresentationsofsimpletypetheory(withombinatorsorlambda-alulus,withorwithouttheaxiomofin- nity,...),thetheoryofequality,arithmeti,...However,asystematiwayoftransformingasetofaxiomsintoasetofrewriterulesisstilltobefound.AstepinthisdiretionisKnuth-Bendixmethod[12℄anditsextensions,thatpermittotransformsomeequationaltheoriesintorewritesystemswiththeutelimina-tionproperty(i.e.withtheon ueneproperty).AnotherstepinthisdiretionistheresultofS.NegriandJ.VonPlato[14℄thatgivesawaytotransformsomesetsofaxioms,inpartiularallquanti erfreetheories,intoasetofnonlogialdedutionrulesinsequentalulus,preservingutelimination.Inthispaper,weproposeawaytotransformanyonsistentquanti erfreetheoryintoasetofomputationruleswiththeuteliminationproperty.Our rstattemptwastouseDedutionmodulo[7,8℄orAsymmetridedu-tionModulo[6℄asageneralframeworkwhereomputationanddedutionanbemixed.InDedutionmodulo,theintrodutionruleofonjuntionABA^BistransformedintoaruleABifC A^BCwhere istheongruenegeneratedbytheomputationrules,andtheoth-erdedutionrulesaretransformedinasimilarway.InAsymmetridedutionmodulo,thisruleisrephrase