回归分析的基本思想及其初步应用刘建忠2010年7月选修2-3回归部分增加的内容1回归分析知识结构图2回归分析教学内容分析3@163.com回归分析的基本思想及其初步应用@163.com选修2-3回归部分增加的内容必修3已学回归内容:1.画散点图;2.最小二乘法的思想;3.求回归直线方程y=bx+a;4.用回归直线方程解决应用问题。选修2-3中增加内容:1.引入线性回归模型y=bx+a+e.2.了解模型中随机误差e产生的原因。3.了解相关指数R2和模型拟合效果之间的关系。4.了解残差图的作用。5.利用线性回归模型解决一类非线性回归模型。6.正确理解统计分析方法与分析结果。@163.com回归分析知识结构图问题背景分析线性回归模型两个变量线性相关最小二乘法两个变量非线性相关非线性回归模型残差分析相关指数散点图应用注:虚线表示高中阶段不涉及的关系@163.com回归分析教学内容分析一、教学任务分析1、利用残差和R2探讨回归模型拟合的效果,让学生理解在统计中回归诊断的重要性,只有拟合效果好的模型才能利用回归模型预报。2、通过例1归纳出建立回归模型的基本步骤,并归纳出利用回归模型预报体重时应该注意的适用性。3、通过例2让学生体会如何借助线性回归模型研究具有非线性关系的两个变量。4、寻求近似效果好的模型及寻求最有效的数据处理方法是人们不断追求的目标。@163.com二、教学重点1、函数模型与“回归模型”的关系;散点图与模型的选择。2、建立回归模型的步骤,特别强调回归诊断中如何利用残差和相关指数R23、注意提炼案例所蕴含的统计思想。应用统计方法解决实际问题需要注意的问题。三、教学难点借助函数变换把非线性相关关系转化为线性相关关系,例2中所建立的两个模型:一个是把预报变量对数化,一个是把解释变量平方化。回归分析教学内容分析@163.com四、教学情境设计问题一:结合例1得出线性回归模型及随机误差。并且区分函数模型和回归模型。问题二:在线性回归模型中,e是用bx+a预报真实值y的随机误差,它是一个不可观测的量,那么应如何研究随机误差呢?问题三:如何发现数据中的错误?如何衡量随机模型的拟合效果?问题四:结合例1思考:用回归方程预报体重时应注意什么?问题五:归纳建立回归模型的基本步骤。问题六:若两个变量呈现非线性关系,如何解决?(分析例2)@163.com例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。问题一:结合例1得出线性回归模型及随机误差。并且区分函数模型和回归模型。解:1、选取身高为自变量x,体重为因变量y,作散点图:@163.com问题一:结合例1得出线性回归模型及随机误差。并且区分函数模型和回归模型。2.回归方程:172.85849.0ˆxyˆ学身高172cm女大生体重y=0.849×172-85.712=60.316(kg)探究:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?答:用这个回归方程不能给出每个身高为172cm的女大学生的体重的预测值,只能给出她们平均体重的值。@163.com问题一:结合例1得出线性回归模型及随机误差。并且区分函数模型和回归模型。由于所有的样本点不共线,而只是散布在某一直线的附近,所以身高和体重的关系可以用线性回归模型来表示:其中a和b为模型的未知参数,e称为随机误差.y=bx+a+e,E(e)=0,D(e)=2.注:1、随机误差e包含预报体重不能由身高的线性函数解释的所有部分。2、E(e)=0可用回归方程必过样本点中心解释。(,)xy@163.com问题一:结合例1得出线性回归模型及随机误差。并且区分函数模型和回归模型。11函数模型与“回归模型”的关系中国GDP散点图020000400006000080000100000120000199219931994199519961997199819992000200120022003年GDP函数模型:yfx样本点在函数曲线上回归模型:yfxe样本点不在回归函数曲线上@163.com函数模型与“回归模型”的关系函数模型:因变量y完全由自变量x确定回归模型:预报变量y完全由解释变量x和随机误差e确定问题一:结合例1得出线性回归模型及随机误差。并且区分函数模型和回归模型。@163.com问题二:在线性回归模型中,e是用bx+a预报真实值y的随机误差,它是一个不可观测的量,那么应如何研究随机误差呢?,1,2,...,,1,2,...iiiiiiiiybxaineyyybxaine1122nniii残差:一般的对于样本点(x,y),(x,y),...,(x,y),它们的随机误差为e其估计值为称为相应于点(x,y)的残差。结合例1除了身高影响体重外的其他因素是不可测量的,不能希望有某种方法获取随机误差的值以提高预报变量的估计精度,但却可以估计预报变量观测值中所包含的随机误差,这对我们查找样本数据中的错误和模型的评价极为有用,因此在此我们引入残差概念。@163.com问题三:如何发现数据中的错误?如何衡量随机模型的拟合效果?(1)我们可以通过分析发现原始数据中的可疑数据,判断建立模型的拟合效果。iiieybxa(1)计算(i=1,2,...n)残差分析(2)画残差图(1)查找异常样本数据(3)分析残差图(2)残差点分布在以O为中心的水平带状区域,并沿水平方向散点的分布规律相同。@163.com残差图的制作和作用:制作:坐标纵轴为残差变量,横轴可以有不同的选择.横轴为编号:可以考察残差与编号次序之间的关系,常用于调查数据错误.横轴为解释变量:可以考察残差与解释变量的关系,常用于研究模型是否有改进的余地.作用:判断模型的适用性若模型选择的正确,残差图中的点应该分布在以横轴为中心的带形区域.问题三:如何发现数据中的错误?如何衡量随机模型的拟合效果?@163.com问题三:如何发现数据中的错误?如何衡量随机模型的拟合效果?下面表格列出了女大学生身高和体重的原始数据以及相应的残差数据。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359残差-6.3732.6272.419-4.6181.1376.627-2.8830.382残差图的制作及作用。•坐标纵轴为残差变量,横轴可以有不同的选择;•若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域;•对于远离横轴的点,要特别注意。身高与体重残差图异常点•错误数据•模型问题几点说明:第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。@163.com问题三:如何发现数据中的错误?如何衡量随机模型的拟合效果?显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。在线性回归模型中,R2表示解析变量对预报变量变化的贡献率。R2越接近1,表示回归的效果越好(因为R2越接近1,表示解析变量和预报变量的线性相关性越强)。如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来做出选择,即选取R2较大的模型作为这组数据的模型。注:相关指数R2是度量模型拟合效果的一种指标。在线性模型中,它代表自变量刻画预报变量的能力。(2)我们可以用相关指数R2来刻画回归的效果,其计算公式是22121()11()niiiniiyyRyy残差平方和。总偏差平方和@163.com1354总计0.36128.361残差变量0.64225.639随机误差比例平方和来源从上中可以看出,解析变量对总效应约贡献了64%,即R20.64,可以叙述为“身高解析了64%的体重变化”,而随机误差贡献了剩余的36%。所以,身高对体重的效应比随机误差的效应大得多。问题三:如何发现数据中的错误?如何衡量随机模型的拟合效果?下面我们用相关指数分析一下例1:@163.com问题四:结合例1思考:用回归方程预报体重时应注意什么?用身高预报体重时应注意的问题:1.回归方程只适用于我们所研究的样本的总体。2.我们建立的回归方程一般都有时间性。3.样本取值的范围会影响回归方程的适用范围。4.不能期望回归方程得到的预报值就是预报变量的精确值。涉及到统计的一些思想:模型适用的总体;模型的时间性;样本的取值范围对模型的影响;模型预报结果的正确理解。@163.com一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。(2)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等)。(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y=bx+a).(4)按一定规则估计回归方程中的参数(如最小二乘法)。(5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是否合适等。问题五:归纳建立回归模型的基本步骤。@163.com问题六:若两个变量呈现非线性关系,如何解决?(分析例2)例2一只红铃虫的产卵数y和温度x有关。现收集了7组观测数据列于表中:温度xoC21232527293235产卵数y/个711212466115325(1)试建立产卵数y与温度x之间的回归方程;并预测温度为28oC时产卵数目。(2)你所建立的模型中温度在多大程度上解释了产卵数的变化?@163.com选变量解:选取气温为解释变量x,产卵数为预报变量y。画散点图假设线性回归方程为:ŷ=bx+a选模型分析和预测当x=28时,y=19.87×28-463.73≈93估计参数由计算器得:线性回归方程为y=19.87x-463.73相关指数R2=r2≈0.8642=0.7464所以,一次函数模型中温度解释了74.64%的产卵数变化。050100150200250300350036912151821242730333639当x=28时,y=19.87×28-463.73≈93方法一:一元函数模型问题六:若两个变量呈现非线性关系,如何解决?(分析例2)@163.comy=c1x2+c2变换y=c1t+c2非线性关系线性关系问题1