第五章定积分定积分概念与性质微积分基本公式定积分计算反常积分定积分第三节定积分的换元法和分部积分法定理:注意:应用公式(*)时,换元必换限。)(则有越出值域不上具有连续导数,且其,或,在满足条件:上连续,在区间如果*)()]([)(],,[][][)()2(;)(,)()1()(],[)(dtttfdxxfbatbatxbaxfba一、定积分的换元法证明:)()()(aFbFdxxfba设F(x)是f(x)的一个原函数,则)],([)(tFt又令由复合函数求导法,得)()(txfdtdxdxdFt)()())((ttf)()(即dtttf)()]([)]([)]([FF)()(aFbFdtttfdxxfba)()]([)(此即例1计算下列定积分dxxxdttedxxxdxxt053102102241sinsin)4()3(1)2(11)1(2解dtttdxxtxtdtdx212411211)1(2022cossintdttdtt21)111(2.32ln22)1ln(222121tt202sincos1022coscossin1)2(tdtttdxxxtxtdtdx16)44sin(8124cos1412sin412020202ttdtttdt1022)3(dttet解dxxx053sinsin)4(21102102210212222eetdedttettt或21210210212eedueuututdtdudxxx023cossindxxxdxxx2232023cossincossin54sin52sin52sinsinsinsin22520252232023xxxdxxdx例2证明02200202010100cos1sin,)(sin2)(sin.)(cos)(sin.]1,0[)()4()1()1()3()()()2()(0)(,)(2)(],[)()1(dxxxxdxxfdxxxfbdxxfdxxfaxfdxxxdxxxdxxbafdxxfxfxfdxxfdxxfaaxfmnnmbabaaaa由此计算上连续,则有在若为奇函数当,为偶函数当上连续,则在若证明aaaadxxfdxxfdxxf00)()()()1(00)()(atxadttfdxxf令而adttf0)(adxxf0)(为奇函数当,为偶函数当)(0)(,)(20xfxfdxxfaaaaadxxfdxxfdxxf00)()()(即证明abtxbabadttfdxxbaf)()()2(令右边左边badxxf)(01110)1()1()3(dtttdxxxnmtxnm令左边1010)1()1(dtxxdtttnmnm右边证明则设,2.txa0220)]2[sin()(sindttfdxxf2020)(cos)(cosdxxfdttf0)(sin)(dttft则令,.txb200)(sin2)(sindxxfdxxxf即00)(sin)(sindtttfdttf00)][sin()()(sindttftdxxxf00)(sin)(sindxxxfdxxf利用上述结果,即得0202cos1sin2cos1sindxxxdxxxx02cos1)(cos2xxd0)arctan(cos2x)44(224例3.)2(01cos110,)(412dxxfxxxxexfx计算,设函数解.212121tan212tancos1)()2(4200120012141222eetdttetdtdttfdxxftttxdtdx练习dxxdxxdxxxdxxxnn20022311sin2sincoscos)2(451证明)计算(答案34)2(611)()(2020tx且令提示:定理babababababavduuvudvdxuvuvdxvuxvxubaxvxu或则有,、上具有连续导数在区间、设)()(],[)()(二、定积分的分部积分法例1102100)3(arcsin)2(cos)1(dxedxxxdxxx计算解2cossinsinsin)1(0000xxdxxxxxd原式2222222)3(10101010102ttttttxtdtdxeedtetetdedtte原式解12312)1(12)1(11216211arcsin)2(210212210222102210xxdxdxxxxx原式例2.)2(,5)2(,3)2(,1)0(10dxxfxfff试计算已知解.2)(41)2(21)(41)(41)(41)(41)2(202020202010221tffdttftfttftddttftdxxfxtxdtdx例3证明的奇数为大于为正偶数1,3254231,22143231sin20nnnnnnnnnnxdxInn证nnnnnnnnInIndxxxnxdxxnxxxxdxdxI)1()1()sin1(sin)1(cossin)1(sincos)cos(sinsin22022202220120120(*)12nnInnI故有但)递推得由(.1sin,232547612221222143652232212*20120011202xdxIdxIImmmmIImmmmImm的奇数为大于为正偶数1,3254231,22143231sin20nnnnnnnnnnxdxInn练习dxxxdxxx0241)sin()2(ln1)计算(答案46)2()12ln2(412)(