空间几何体练习题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

空间几何体【课时目标】熟练掌握空间几何体的结构,以三视图为载体,进一步巩固几何体的体积与表面积计算.1.圆柱、圆锥、圆台的侧面展开图及侧面面积公式.2.空间几何体的表面积和体积公式.名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=________锥体(棱锥和圆锥)S表面积=S侧+S底V=________台体(棱台和圆台)S表面积=S侧+S上+S下V=_____________________球S=________V=43πR3一、选择题1.圆柱的轴截面是正方形,面积是S,则它的侧面积是()A.1πSB.πSC.2πSD.4πS2.若某空间几何体的三视图如图所示,则该几何体的体积是()A.12B.23C.1D.23.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是()4.一个几何体的三视图如图,该几何体的表面积为()A.280B.292C.360D.3725.棱长为a的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为()A.a33B.a34C.a36D.a3126.已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是32π3,则这个三棱柱的体积是()A.963B.163C.243D.483二、填空题7.一个几何体的三视图如图所示,则这个几何体的体积为________.8.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是________cm3.9.圆柱形容器内盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.三、解答题10.如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;11.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).能力提升12.设某几何体的三视图如下(尺寸的长度单位为m).则该几何体的体积为________m3.13.如图所示,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BC=CC1=2,P是BC1上一动点,则CP+PA1的最小值是___________.1.空间几何体是高考必考的知识点之一,重点考查空间几何体的三视图和体积、表面积的计算,尤其是给定三视图求空间几何体的体积或表面积,更是近几年高考的热点.其中组合体的体积和表面积有加强的趋势,但难度也不会太大,解决这类问题的关键是充分发挥空间想象能力,由三视图得到正确立体图,进行准确计算.2.“展”是化折为直,化曲为平,把立体几何问题转化为平面几何问题,多用于研究线面关系,求多面体和旋转体表面的两点间的距离最值等等.习题课空间几何体答案知识梳理1.2πrlπrlπ(r+r′)l2.Sh13Sh13(S上+S下+S上S下)h4πR2作业设计1.B[设圆柱底面半径为r,则S=4r2,S侧=2πr·2r=4πr2=πS.]2.C[由三视图可知,该空间几何体是底面为直角三角形的直三棱柱,三棱柱的底面直角三角形的直角边长分别为1和2,三棱柱的高为2,所以该几何体的体积V=12×1×2×2=1.]3.C[当俯视图为A中正方形时,几何体为边长为1的正方体,体积为1;当俯视图为B中圆时,几何体为底面半径为12,高为1的圆柱,体积为π4;当俯视图为C中三角形时,几何体为三棱柱,且底面为直角边长为1的等腰直角三角形,高为1,体积为12;当俯视图为D中扇形时,几何体为圆柱的14,且体积为π4.]4.C[由三视图可知该几何体是由下面一个长方体,上面一个长方体组合而成的几何体.∵下面长方体的表面积为8×10×2+2×8×2+10×2×2=232,上面长方体的表面积为8×6×2+2×8×2+2×6×2=152,又∵长方体表面积重叠一部分,∴几何体的表面积为232+152-2×6×2=360.]5.C[连接正方体各面中心构成的八面体由两个棱长为22a的正四棱锥组成,正四棱锥的高为a2,则八面体的体积为V=2×13×(22a)2·a2=a36.]6.D[由43πR3=32π3,得R=2.∴正三棱柱的高h=4.设其底面边长为a,则13·32a=2,∴a=43.∴V=34(43)2·4=483.]7.103解析该几何体是上面是底面边长为2的正四棱锥,下面是底面边长为1、高为2的正四棱柱的组合体,其体积为V=1×1×2+13×22×1=103.8.144解析此几何体为正四棱台与正四棱柱的组合体,而V正四棱台=13(82+42+82×42)×3=112,V正四棱柱=4×4×2=32,故V=112+32=144.9.4解析设球的半径为rcm,则πr2×8+43πr3×3=πr2×6r.解得r=4.10.解(1)如图所示.(2)所求多面体体积V=V长方体-V正三棱锥=4×4×6-13×12×2×2×2=2843(cm3).11.解由题意可知矩形的高即圆柱的母线长为9.6-8×2r8=1.2-2r,∴塑料片面积S=πr2+2πr(1.2-2r)=πr2+2.4πr-4πr2=-3πr2+2.4πr=-3π(r2-0.8r)=-3π(r-0.4)2+0.48π.∴当r=0.4时,S有最大值0.48π,约为1.51平方米.(2)若灯笼底面半径为0.3米,则高为1.2-2×0.3=0.6(米).制作灯笼的三视图如图.12.4解析由三视图可知原几何体是一个三棱锥,且三棱锥的高为2,底面三角形的一边长为4,且该边上的高为3,故所求三棱锥的体积为V=13×12×3×4×2=4m3.13.52解析将△BCC1沿BC1线折到面A1C1B上,如图.连接A1C即为CP+PA1的最小值,过点C作CD⊥C1D于D点,△BCC1为等腰直角三角形,∴CD=1,C1D=1,A1D=A1C1+C1D=7.∴A1C=A1D2+CD2=49+1=52.

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功