作业习题1、求下列函数的导数。(1)223)1(xxy;(2)xxysin;(3)bxeyaxsin;(4))ln(22axxy;(5)11arctanxxy;(6)xxxy)1(。2、求下列隐函数的导数。(1)0)cos(sinyxxy;(2)已知,exyey求)0(y。3、求参数方程)cos1()sin(tayttax)0(a所确定函数的一阶导数dxdy与二阶导数22dxyd。4、求下列函数的高阶导数。(1),xy求)(ny;(2),2sin2xxy求)50(y。5、求下列函数的微分。(1))0(,xxyx;(2)21arcsinxxy。6、求双曲线12222byax,在点)3,2(ba处的切线方程与法线方程。7、用定义求)0(f,其中,0,1sin)(2xxxf.0,0xx并讨论导函数的连续性。作业习题参考答案:1、(1)解:])1[()1()(])1([23223223xxxxxxy]))(1(2[)1(3223222xxxxxxxxxx2)1(2)1(323222)37)(1(222xxx。(2)解:2sincos)sin(xxxxxxy。(3)解:bxbebxaebxeyaxaxaxcossin)sin()cossin(bxbbxaeax。(4)解:][1])[ln(222222axxaxxaxxy])(211[1222222axaxaxx]2211[12222xaxaxx]1[12222axxaxx221ax。(5)解:)11()11(11)11(arctan2xxxxxxy11)1()1()1()1(2)1(2222xxxxxx。(6)解:)(])1[(1lnxxxxexxy]1ln)1()1()1([)1(2xxxxxxxxxxx)1ln11()1(xxxxxx。2、(1)解:两边直接关于x求导得0)1)(sin(cossinyyxxyxy)sin(sin)sin(cosyxxyxxyy。(2)解:将0x代入原方程解得,1y原方程两边直接关于x求导得0yxyyey,上方程两边关于x再次求导得,02)(2yxyyeyeyy将0x,,1y代入上边第一个方程得1)0(ey,将0x,,1y1)0(ey代入上边第二个方程得2)0(ey。3、解:),cos1(tadtdxtadtdysin;2cot)cos1(sinttatadtdxdtdydxdy;2csc41)cos1(1)212csc()(4222tatatdxdtdxdydtddxyd。4、(1)解:1xy;2)1(xy;……依此类推)1(,)1()1()(nxnynn。(2)解:设,,2sin2xvxu则)50,,2,1)(22sin(2)(kkxukk,),50,,4,3(0,2,2)(kvvxvk代入萊布尼茨公式,得2)2482sin(2!249502)2492sin(250)2502sin(2)2sin(4849250)50(2)50(xxxxxxxy)2sin212252cos502sin(2250xxxxx。5、(1)解:),1(ln)(lnxxeyxxxdxxxdyx)1(ln.(2)解:]122arcsin111[112222xxxxxxy2322)1(arcsin1xxxx;dxydydxxxxx2322)1(arcsin1。6、解:首先把点)3,2(ba代入方程左边得1343422222222bbaabyax,即点)3,2(ba是切点。对双曲线用隐函数求导得,,0222222yaxbybyyax过点)3,2(ba的切线的斜率为,3232)3,2(22abbaabbay故过点)3,2(ba的切线方程为)2(323axabby;过点)3,2(ba的法线方程为)2(233axbaby。7、解:,01sin1sin0)0()()0(limlimlim0200xxxxxxfxffxxx同理0)0(f;故0)0(f。显然xxxxxxxxxf1cos1sin211cos1sin2)(22在0x点连续,因此只需考查)(xf在0x点的连续性即可。但已知x1cos在0x点不连续,由连续函数的四则运算性质知)(xf在0x点不连续。讨论习题:1、设,)3()(xxxxf求)(xf。2、求和nnxnxxxS2322232。3、设函数)(xf在]1,1[上有定义,且满足,11,)(3xxxxfx证明)0(f存在,且1)0(f。讨论习题参考答案:1、解:因为),3(),3(),3()(222xxxxxxxf.0,30,3xxx易知)(xf在开区间),3()3,0()0,(内都是可导的;又对于分段点0x,3x,有00)3(0)0()()0(200limlimxxxxfxffxx,00)3(0)0()()0(200limlimxxxxfxffxx,即0)0(f;930)3()3(2323limlimxxxxfxx,9)(30)3()3(2323limlimxxxxfxx,即)3(f不存在;所以除3x之外)(xf在区间),3()3,(內均可导,且有,36,0,63)(22xxxxxf).3,0(,0),,3()0,(xxx2、解:因为xxxxxnn11112,212)1()1(1)1(xnxxnxxxnnn,2112)1()1(1321xnxxnnxxxnnn;]1)1()122([)1(])1()1([})1()1(1[])321([)32()321(3221222322121123212132223222xxnxnnxnxxxnxxnxxxnxxnxxnxxxxxnxxxxxxnxxxxnxxxSnnnnnnnnnnnn3、证:由,11,)(3xxxxfx可知当0x时,0)0(0f,即0)0(f。又)0,11(,0)0()()(3xxxxxxfxfxxfxx;已知1300limlimxxxxxxx,由两边夹定理可得10)0()()0(lim0xfxffx。思考题:1、若)(uf在0u不可导,)(xgu在0x可导,且)(00xgu,则)]([xgf在0x处()(1)必可导,(2)必不可导,(3)不一定可导。2、设)(xg连续,且)()()(2xgaxxf,求)(af。思考题参考答案:1、解:正确选择是(3)例如:uuf)(在0u处不可导;若取xxgusin)(在0x处可导,则xxgfsin)]([在0x处不可导;即(1)不正确。又若取4)(xxgu在0x处可导,则有44)]([xxxgf在0x处可导。即(2)也不正确。2、解:因为)(xg可导,所以)()()()(2)(2xgaxxgaxxf又因为)(xg不一定存在,故用定义求)(af,)(2)]()()(2[)()0)(()()()(limlimlimagxgaxxgaxxfafaxafxfafaxaxax