4、有效边界概念与最佳投资组合确定了解了在证券投资组合中通过预期收益R和风险指标均方差COV两个指标来研究分析收益与风险的相互关系,以求得在风险即定的前提下,为追求收益的最大化,或在收益即定的前提下,达到最大限度的规避风险。这就是二维规划的含义。用图表表示:此图的横轴表示证券组合的投资风险,纵轴表示为证券组合的预期收益水平,任何一种证券组合,都将在图表中找到所相对应的一点,全部证券组合,即构成图中ABCD所形成的阴影部分,代表人们面对的所有投资机会。从中可以看出,越是处于图形上端的点。所对应的预期收益就越大,反之则越小;而越是位于图形右边的点,所对应的投资风险就越大,反之则越小。显然,A点代表了风险最小的证券组合,B点代表了预期收益最大的证券组合,除此之外,再也不可能存在其它比A点风险更小的和比B点预期收益更大的证券组合,从平面几何的筑图原理知道:这二维规划的可行性区域只能是在第二象限中,如果以360度为所有点的包容区域。那么最佳的组合点必定都落在90度~180度之间。如A点,它是证券组合中均方差最小的一点,即圆圈中180度此点必然可与纵轴相切,其它任何一点都只会加大风险度。而图中B点,它是证券组合中预期收益最大的一点,即圆圈中90度此点必然可与横轴相切,其它任何一点都只会减少预期收益。在圆内的任何一点,都可引伸出一条平行线在圆周上找到与其收益相对应的一点,但风险必然更大,即非有效组合。同理,也可引伸出一条垂直线在圆周上找到与其风险相对应的一点,但收益必然更小,也非有效组合。可见,只有落在AB曲线上的证券组合才是全部有效组合,AB曲线也是所有证券有效组合的有效边界,在有效边界以内的任何一点投资都是非有效的。我们曾提到的风险厌恶者,即保守的投资者,可选择A点附近的有效组合,虽然收益值较小,但是COV同样也小。反之,风险偏好者则可选择接近B点的有效组合,以搏取最大的收益值,同时承担相对应的高风险。