【步步高】2017版高考数学一轮复习 第七章 不等式 7.3 二元一次不等式(组)与简单的线性规划问

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1【步步高】(江苏专用)2017版高考数学一轮复习第七章不等式7.3二元一次不等式(组)与简单的线性规划问题理1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax+By+C0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.重要结论(1)画二元一次不等式表示的平面区域的直线定界,特殊点定域:①直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;②特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.(2)利用“同号上,异号下”判断二元一次不等式表示的平面区域:对于Ax+By+C0或Ax+By+C0,则有①当B(Ax+By+C)0时,区域为直线Ax+By+C=0的上方;2②当B(Ax+By+C)0时,区域为直线Ax+By+C=0的下方.(3)最优解和可行解的关系:最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)不等式Ax+By+C0表示的平面区域一定在直线Ax+By+C=0的上方.(×)(2)线性目标函数的最优解可能是不唯一的.(√)(3)目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0在y轴上的截距.(×)(4)不等式x2-y20表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y轴的两块区域.(√)1.如图阴影部分表示的区域可用二元一次不等式组表示为________.答案x+y-1≥0,x-2y+2≥0解析两直线方程分别为x-2y+2=0与x+y-1=0.由(0,0)点在直线x-2y+2=0右下方可知x-2y+2≥0,又(0,0)点在直线x+y-1=0左下方可知x+y-1≥0,即x+y-1≥0,x-2y+2≥0为所表示的可行域.2.不等式组x-3y+60,x-y+2≥0表示的平面区域是________.答案③解析用特殊点代入,比如(0,0),容易判断为③.33.若实数x,y满足不等式组x-y≥-1,x+y≥1,3x-y≤3,则该约束条件所围成的平面区域的面积是________.答案2解析因为直线x-y=-1与x+y=1互相垂直,所以如图所示的可行域为直角三角形,易得A(0,1),B(1,0),C(2,3),故AB=2,AC=22,其面积为12×AB×AC=2.4.若x,y满足x-y≤0,x+y≤1,x≥0,则z=x+2y的最大值为________.答案2解析可行域如图所示.目标函数化为y=-12x+12z,当直线y=-12x+12z过点A(0,1)时,z取得最大值2.5.投资生产A产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1400万元,场地900平方米,则上述要求可用不等式组表示为__________________(用x,y分别表示生产A,B产品的吨数,x和y的单位是百吨).答案200x+300y≤1400,200x+100y≤900,x≥0,y≥0解析用表格列出各数据AB总数产品吨数xy资金200x300y1400场地200x100y900所以不难看出,x≥0,y≥0,200x+300y≤1400,200x+100y≤900.4题型一二元一次不等式(组)表示的平面区域命题点1不含参数的平面区域问题例1(1)不等式(x-2y+1)(x+y-3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的________.(2)不等式组x≥0,x+3y≥4,3x+y≤4所表示的平面区域的面积等于________.答案(1)③(2)43解析(1)(x-2y+1)(x+y-3)≤0⇒x-2y+1≥0,x+y-3≤0,或x-2y+1≤0,x+y-3≥0.画出平面区域后,只有③符合题意.(2)由题意得不等式组表示的平面区域如图阴影部分,A(0,43),B(1,1),C(0,4),则△ABC的面积为12×1×83=43.命题点2含参数的平面区域问题例2若不等式组x≥0,x+3y≥4,3x+y≤4所表示的平面区域被直线y=kx+43分为面积相等的两部5分,则k的值是________________________________________________________________.答案73解析不等式组表示的平面区域如图所示.由于直线y=kx+43过定点0,43.因此只有直线过AB中点时,直线y=kx+43能平分平面区域.因为A(1,1),B(0,4),所以AB中点D12,52.当y=kx+43过点12,52时,52=k2+43,所以k=73.思维升华(1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.(1)不等式组x≥0,x+y≤3,y≥x+1表示的平面区域为Ω,直线y=kx-1与区域Ω有公共点,则实数k的取值范围为________.(2)已知约束条件x≥1,x+y-4≤0,kx-y≤0表示面积为1的直角三角形区域,则实数k的值为________.答案(1)[3,+∞)(2)1解析(1)直线y=kx-1过定点M(0,-1),由图可知,当直线y=kx-1经过直线y=x+1与直线x+y=3的交点C(1,2)时,k最小,此时kCM=2--1-0=3,因此k≥3,即k∈[3,6+∞).(2)由于x=1与x+y-4=0不可能垂直,所以只有可能x+y-4=0与kx-y=0垂直或x=1与kx-y=0垂直.①当x+y-4=0与kx-y=0垂直时,k=1,检验知三角形区域面积为1,即符合要求.②当x=1与kx-y=0垂直时,k=0,检验不符合要求.题型二求目标函数的最值问题命题点1求线性目标函数的最值例3(2014·广东)若变量x,y满足约束条件y≤x,x+y≤1,y≥-1,且z=2x+y的最大值和最小值分别为m和n,则m-n=________.答案6解析画出可行域,如图阴影部分所示.由z=2x+y,得y=-2x+z.由y=x,y=-1,得x=-1,y=-1,∴A(-1,-1).由x+y=1,y=-1,得x=2,y=-1,∴B(2,-1).当直线y=-2x+z经过点A时,zmin=2×(-1)-1=-3=n.当直线y=-2x+z经过点B时,zmax=2×2-1=3=m,故m-n=6.命题点2求非线性目标函数的最值例4实数x,y满足x-y+1≤0,x0,y≤2.(1)若z=yx,求z的最大值和最小值,并求z的取值范围;7(2)若z=x2+y2,求z的最大值与最小值,并求z的取值范围.解由x-y+1≤0,x0,y≤2,作出可行域,如图中阴影部分所示.(1)z=yx表示可行域内任一点与坐标原点连线的斜率,因此yx的范围为直线OB的斜率到直线OA的斜率(直线OA的斜率不存在,即zmax不存在).由x-y+1=0,y=2,得B(1,2),∴kOB=21=2,即zmin=2,∴z的取值范围是[2,+∞).(2)z=x2+y2表示可行域内的任意一点与坐标原点之间距离的平方.因此x2+y2的值最小为OA2(取不到),最大值为OB2.由x-y+1=0,x=0,得A(0,1),∴OA2=(02+12)2=1,OB2=(12+22)2=5,∴z的取值范围是(1,5].引申探究1.若z=y-1x-1,求z的取值范围.解z=y-1x-1可以看作过点P(1,1)及(x,y)两点的直线的斜率.∴z的取值范围是(-∞,0).2.若z=x2+y2-2x-2y+3.求z的最大值、最小值.解z=x2+y2-2x-2y+3=(x-1)2+(y-1)2+1,而(x-1)2+(y-1)2表示点P(1,1)与Q(x,y)的距离的平方,(PQ2)max=(0-1)2+(2-1)2=2,8(PQ2)min=(|1-1+1|12+-2)2=12,∴zmax=2+1=3,zmin=12+1=32.命题点3求线性规划的参数例5已知a0,x,y满足约束条件x≥1,x+y≤3,y≥ax-,若z=2x+y的最小值为1,则a=________.答案12解析作出不等式组表示的可行域,如图(阴影部分).易知直线z=2x+y过交点A时,z取最小值,由x=1,y=ax-,得x=1,y=-2a,∴zmin=2-2a=1,解得a=12.思维升华(1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值.(2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有:①x2+y2表示点(x,y)与原点(0,0)的距离,x-a2+y-b2表示点(x,y)与点(a,b)的距离;②yx表示点(x,y)与原点(0,0)连线的斜率,y-bx-a表示点(x,y)与点(a,b)连线的斜率.(3)当目标函数中含有参数时,要根据临界位置确定参数所满足条件.(1)在直角坐标平面内,不等式组y≤x+1,y≥0,0≤x≤t所表示的平面区域的面积为32,则t的值为________.9(2)x,y满足约束条件x+y-2≤0,x-2y-2≤0,2x-y+2≥0.若z=y-ax取得最大值的最优解不唯一,则实数a的值为________.答案(1)1(2)2或-1解析(1)不等式组y≤x+1,y≥0,0≤x≤t所表示的平面区域如图中阴影部分所示.由y=x+1,x=t,解得交点B(t,t+1),在y=x+1中,令x=0得y=1,即直线y=x+1与y轴的交点为C(0,1),由平面区域的面积S=+t+t2=32,得t2+2t-3=0,解得t=1或t=-3(不合题意,舍去).(2)如图,由y=ax+z知z的几何意义是直线在y轴上的截距,故当a0时,要使z=y-ax取得最大值的最优解不唯一,则a=2;当a0时,要使z=y-ax取得最大值的最优解不唯一,则a=-1.题型三线性规划的实际应用例6某客运公司用A、B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A、B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?解设A型、B型

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功