全国计算机二级vb公共基础知识

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第五章定积分一、填空题1.4222sin(31)cosd1xxxxxx2.2040sindlimxxttx3.设1sind,sincos,tuxuuyttt,那么dydx4.()fx在[,ab]上连续,则()dbaxfxx=5.2d(1)pxx当p时收敛,当p时发散6.若()d()()bafxxsfxgx,那么()d()()bagxxfxgx7.设()x在[,ab]上连续,且()ba、()ab,则()()dbaxxx二、计算题1.2120arctand1xxxx2.3e1d1lnxxx3.2d22xxx4.102d1xxx5.10d1exx6.e1/elndxx7.20sind1cosxxxx8.1122d(32)xxx9.13202d1xxx10.设2,01(),12xxfxxx,求0()()dxFxftt在0,2上的表达式,并讨论它的连续性11.设21()edxtfxt,求10()dfxx12.若函数()fx=0dsin()ddxtxtx,求()fx13.设21,0()e,0xxxfxx,求31(2)dfxx第五章定积分复习题答案一、填空题1.02.213.2t4.)()()()(afbfafabfb5.1;16.sab7.222ba二、计算题1.解:xdxxxarctan11022=102)arctan11(arctandxxxx=101010arctanarctanarctanarctanxxdxxdxx=1021022)(arctan)1ln(214xx=3222ln422.解:31ln1exxdx=31)ln1(ln11exdx=31ln12ex=23.解:4324)1arctan(lim)1(1)1(1lim2200202aaaaxxdxxxdx442)1arctan(lim)1(1)1(1lim2200202bbbbxxdxxxdx02022222222xxdxxxdxxxdx4.解:1021xxdx=1)1(lim)1()1(21lim1021201022120xxdx5.解:101xedx=10)11(dxeexx=eeeeedxxxx12ln)1ln(11)1(1010106.解:dxxee/1ln1/1111/11/11lnlnlnlnlnlneeeeeexxdxxxxdxxxdxxdx=e227.解:20cos1sindxxxx=2020220202tan2cos2cos1sincos1dxxdxxxdxxxdxxx=202tanxxd+20202tan2tanxxdxx=28.解:1122d(32)xxx12231()44xtdttt令3-2=22131()44dttt=213ln()44tt3ln2849.解:31/202d1xxxsin326600sin(cos1)cosxttdttdt令360cos233(cos)338tt10.解:当10x时,xdttfxF0)()(=xxdtt0323当21x时,xdttfxF0)()(=61221102xdttdttx31)01()01(FF,则连续,在]20[)(xF11.解:0)1(f,10)(dxxf=eeedxxexxdfxxfxx2121)()(101010102212.解:令uxt,)(xf=0)(sinxxuuddxd=0sin)1()sin(sinxxxududxd13.解:令ux211)(duuf=eeuudueduuuu137)3()1(1001310012

1 / 55
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功