压裂分析解释和设计汇报提纲1、三维压裂设计软件介绍2、实例分析1.1FracproPT的主要模块压裂设计模块压裂分析模块产能模块数据转换模块评价最合适的裂缝缝长,生成设计施工泵序一览表。进行测试压裂分析和净压力拟合,可以确定闭合应力,地层参数,分析近井筒摩阻和多裂缝效应。根据设计模块中压裂裂缝扩展和支撑剂运移模型,模拟支撑剂浓度剖面对产能的影响1.2压裂分析模块压裂分析的步骤:净压力拟合测试压裂分析tubcPnetPPPP液柱摩阻模拟净压力是由计算机根据模型计算得到测定净压力:确定闭合应力、瞬间停泵压力和净压力入口摩阻分析确定孔眼摩阻和近井筒摩阻确定砂岩渗透率、多裂缝系数和造壁系数1.2压裂分析模块闭合应力:地层裂缝闭合时液体压力确定闭合压力方法平方根法G函数法双对数法——理想条件时,为地层最小水平主应力——地层复杂时,为裂缝高度贯穿地层最小水平主应力的平均值净压力闭合时间ISIP(瞬间停泵压力)井底压力时间1.2压裂分析模块Square-root-of-shutdowntimeBHPdP/dtPressure,dP/dtFractureclosureReferencelineSquare-root-of-shutdowntimeBHPdP/dtdP/dtPressure,dP/dtFractureclosureReferenceline平方根法:ΔP=BHP-ISIPLogScale(ΔP,t*dΔP,dΔt)Fractureclosuret*dΔP/dΔtLogScale(Δt=t-tshut-down)½-slopeΔRadialflowlinearflowΔP=BHP-ISIPLogScale(ΔP,t*dΔP,dΔt)Fractureclosuret*dΔP/dΔtLogScale(Δt=t-tshut-down)½-slopeΔRadialflowlinearflow1-slope双对数法:小型压裂闭合压力分析的基础是裂缝闭合前的流体流动为线性流,闭合后为过度阶段1.2压裂分析模块G函数法:BHPdP/dGPressure,dP/dG,G*dP/dGFractureclosureG*dP/dGReferencelineG-functionBHPdP/dGPressure,dP/dG,G*dP/dGFractureclosureG*dP/dGReferencelineG-functionBHPdP/dGPressure,dP/dG,G*dP/dGFractureclosureG*dP/dGReferencelineG-functionDeviationbelowreferencelinecouldindicateheightrecessionBHPdP/dGPressure,dP/dG,G*dP/dGFractureclosureG*dP/dGReferencelineG-functionDeviationbelowreferencelinecouldindicateheightrecessionG-functionBHPdP/dGPressure,dP/dG,G*dP/dGFractureclosureG*dP/dGReferencelineDeviationabovereferencelinecouldindicatepressuredependentleakoff/fissureopeningG-functionBHPdP/dGPressure,dP/dG,G*dP/dGFractureclosureG*dP/dGReferencelineDeviationabovereferencelinecouldindicatepressuredependentleakoff/fissureopeningBHPdP/dGPressure,dP/dG,G*dP/dGFractureclosureG*dP/dGG-functionReferencelineLinearbehavior,butintersectionabovetheorigincouldindicatefracturegrowthaftershut-downBHPdP/dGPressure,dP/dG,G*dP/dGFractureclosureG*dP/dGG-functionReferencelineLinearbehavior,butintersectionabovetheorigincouldindicatefracturegrowthaftershut-down1.2压裂分析模块入口摩阻:包括孔眼摩阻和近井筒摩阻理想的裂缝实际的裂缝理想裂缝实际裂缝——采用降排量分析方法确定——采用降排量分析方法确定——2.实例分析井筒结构:下入深度内径(cm)外径(cm)钢级套管288015.47917.78N-80油管27654.7077.302N-80射孔深度:2770—2775m采用TY102-127,孔径为1.25cm,孔密为16个/m2.实例分析储层物性:储层深度为2756—2775m;测井渗透率为1md;孔隙度为10%;含油饱和度为70%;孔隙压力:27.29MPa流体压缩系数:0.03661/MPa粘度:0.03mpa·s杨氏模量:20000MPa泊松比:砂0.2,泥0.25压裂液和支撑剂:压裂液为0.45%的胍胶支撑剂为20-40目的陶粒实例分析—清水压裂时间(min)Meas'dBtmh(MPa)DeadStringPress(MPa)SlurryFlowRate(m3/min)13.0014.0015.0016.0017.0018.000.050.00100.0150.0200.0250.00.050.00100.0150.0200.0250.00.02.0004.0006.0008.00010.00井底ISIP:40.71MPaISIP梯度:0.0147MPa/m地面ISIP:13.38MPa停泵时间:15.7min井底瞬间停泵压力40.71MPa时间(min)Meas'dBtmh(MPa)33.4134.1734.9335.6936.4637.2254.358.562.666.871.075.2井底闭合应力:35.72MPa闭合应力梯度:0.0129MPa/m地面闭合应力:8.69MPa闭合时间:61.0min泵注时间:14.6min隐含的携砂液效率:65.3%净压力估算值:4.99MPa井底闭合压力35.72MPa,闭合应力梯度0.0129MPa/m,闭合时间61min,净压力4.99MPa测试压裂分析实例分析—清水压裂G函数时间Meas'dBtmh(MPa)(Gd/dG)DeadStringPress(MPa)0.0001.0202.0403.0604.0805.1000.030.0060.0090.00120.0150.00.02.0004.0006.0008.00010.00井底闭合应力:35.71MPa闭合应力梯度:0.0129MPa/m地面闭合应力:8.68MPa闭合时间:60.5min泵注时间:14.6min隐含的携砂液效率:65.2%净压力估算值:5.00MPa井底闭合应力35.71MPa,闭合应力梯度0.0129MPa/m,闭合时间60.52min,净压力5MPa井底闭合应力35.71MPa,闭合应力梯度0.0129MPa/m两种方法平均值:测试压裂分析实例分析——清水压裂时间(min)BtmSlryRate(m3/min)Meas'dBtmh(MPa)11.0012.0013.0014.0015.0016.000.02.0004.0006.0008.00010.0040.0042.0044.0046.0048.0050.00入口摩阻分析孔眼摩阻1.11MPa近井筒摩阻0.64MPa结论:以孔眼摩阻为主时间(min)NetPressure(MPa)SlurryRate(m3/min)PropConc(kg/m3)ObservedNet(MPa)0.020.040.060.080.0100.00.04.0008.00012.0016.0020.000.02.0004.0006.0008.00010.000.02.0004.0006.0008.00010.000.04.0008.00012.0016.0020.00入口摩阻分析净压力拟合砂岩渗透率0.022md实例分析—胍胶压裂时间(min)BtmSlryRate(m3/min)Meas'dBtmh(MPa)10.0010.8011.6012.4013.2014.000.02.0004.0006.0008.00010.0040.0042.0044.0046.0048.0050.00入口摩阻分析孔眼摩阻0.56MPa近井筒摩阻0.46MPa净压力拟合时间(min)NetPressure(MPa)SlurryRate(m3/min)PropConc(kg/m3)ObservedNet(MPa)0.0012.0024.0036.0048.0060.000.04.0008.00012.0016.0020.000.02.0004.0006.0008.00010.000.086.00172.0258.0344.0430.00.04.0008.00012.0016.0020.00胍胶造壁系数9×10-5m/min0.5,泥岩闭合应力梯度0.016MPa/m结论:与清水压裂相比孔眼摩阻降低实例分析—主压裂时间(min)NetPressure(MPa)SlurryRate(m3/min)PropConc(kg/m3)ObservedNet(MPa)0.0016.0032.0048.0064.0080.000.04.0008.00012.0016.0020.000.02.0004.0006.0008.00010.000.0240.0480.0720.0960.012000.04.0008.00012.0016.0020.00时间体积因子开缝因子滤失因子011117111401.51.51.567333净压力拟合多裂缝效应结论:随着加砂液的泵入,有更多的裂缝张开实例压裂设计长度(米)加砂量(吨)产量(万方)506.8330.3102.317.7423.8150.936.3508.8207.661.8561251.199.1583.3优化缝长:0100200300400500600700050100150200250300缝长m加砂量t0100200300400500600700累积产量×104m3结论:缝长150m为最优时间(day)支撑缝长=157m:累计产油/气量(Msm3)支撑缝长=78m:累计产油/气量(Msm3)支撑缝长=235m:累计产油/气量(Msm3)支撑缝长=314m:累计产油/气量(Msm3)0.030.060.090.0120.0150.00.0130026003900520065000.0130026003900520065000.0130026003900520065000.013002600390052006500实例压裂设计泵注阶段类型排量支撑剂浓度净液体积泵注阶段时间累计时间液体类型支撑剂类型(m3/min)(kg/m3)(m3)(min)(min:sec)主压裂的前置液3018.9276.316:18HPG-1主压裂的携砂液3603.7851.287:35HPG-1陶粒20/40主压裂的携砂液31207.5712.6110:12HPG-1陶粒20/40主压裂的携砂液318011.3563.9914:11HPG-1陶粒20/40主压裂的携砂液324018.9276.7620:56HPG-1陶粒20/40主压裂的携砂液330030.28310.9931:56HPG-1陶粒20/40主压裂的携砂液335945.42516.7548:41HPG-1陶粒20/40主压裂的携砂液341964.35224.1172:48HPG-1陶粒20/40主压裂的顶替