多普勒效应与多径衰落对移动通信的影响

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

多普勒效应及多径衰落对移动通信的影响唐锴(PT1300312)杨江海(PT1300295)夏阳(PT1300315)目录摘要..............................................3第一章多普勒效应.................................4第二章多径衰落...................................9第三章解决方法..................................10总结.............................................24参考文献.........................................25摘要在移动通信中,当移动台移向基站时,频率变高,远离基站时,频率变低,所以我们在移动通信中要充分考虑多普勒效应。当然,由于日常生活中,我们移动速度的局限,不可能会带来十分大的频率偏移,但是这不可否认地会给移动通信带来影响,为了避免这种影响造成我们通信中的问题,我们不得不在技术上加以各种考虑。也加大了移动通信的复杂性。此外,由于移动通信中的电磁波是在自由空间中传播,不可避免地存在多径衰落的现象,这对于接收端的误码率也是一个加大的不利因素,正是基于多普勒效应以及多径衰落会对移动通信产生影响这一现实存在的问题,本文旨在对移动速度进行研究,从而避免多普勒效应对通信产生影响。关键词:多普勒效应,多径衰落,移动通信.第一章多普勒效应1.简介多普勒效应是为纪念奥地利物理学家及数学家克里斯琴·约翰·多普勒(ChristianJohannDoppler)而命名的,他于1842年首先提出了这一理论,主要内容为:物体辐射的波长因为波源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移blueshift);在运动的波源后面时,会产生相反的效应。波长变得较长,频率变得较低(红移redshift);波源的速度越高,所产生的效应越大。根据波红(蓝)移的程度,可以计算出波源循着观测方向运动的速度。2.原理多普勒效应指出,波在波源移向观察者时接收频率变高,而在波源远离观察者时接收频率变低。当观察者移动时也能得到同样的结论。但是由于缺少实验设备,多普勒当时没有用实验验证,几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,以验证该效应。假设原有波源的波长为λ,波速为c,观察者移动速度为v:当观察者走近波源时观察到的波源频率为(c+v)/λ,如果观察者远离波源,则观察到的波源频率为(c-v)/λ。一个常被使用的例子是火车的汽笛声,当火车接近观察者时,其汽笛鸣声会比平常更刺耳.你可以在火车经过时听出刺耳声的变化。同样的情况还有:警车的警报声和赛车的发动机声。如果把声波视为有规律间隔发射的脉冲,可以想象若你每走一步,便发射了一个脉冲,那么在你之前的每一个脉冲都比你站立不动时更接近你自己。而在你后面的声源则比原来不动时远了一步。或者说,在你之前的脉冲频率比平常变高,而在你之后的脉冲频率比平常变低了。产生原因:声源完成一次全振动,向外发出一个波长的波,频率表示单位时间内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的个数,而观察者听到的声音的音调,是由观察者接受到的频率,即单位时间接收到的完全波的个数决定的。当波源和观察者有相对运动时,观察者接收到的频率会改变.在单位时间内,观察者接收到的完全波的个数增多,即接收到的频率增大.同样的道理,当观察者远离波源,观察者在单位时间内接收到的完全波的个数减少,即接收到的频率减小.3.公式假设原有波源的波长为λ,波速为c,观察者移动速度为v:当观察者走近波源时观察到的波源频率为(c+v)/λ,如果观察者远离波源,则观察到的波源频率为(c-v)/λ。对于无线环境来说,由相对运动引起的接收信号频率的偏移称为多普勒频移,与移动用户运动速度成正比。当移动台以恒定速度v在长度为d,端点为X和Y的路径上运动时收到来自远端源S发出的信号,如下图所示。无线电波从源S出发,在X点和Y点分别被移动台接收时所走的路径差为coscosldvt.这里t是移动台从X运动到Y所需的时间,是X和Y处入射波的夹角。由于源端距离很近,可假设X、Y处的是相同的。所以,由路径差造成的接收信号相位变化值为:ostvlc22由此得出频率变化值,即多普勒频移df为:cos)cos(21cvfvtfd可见多普勒频移与移动台运动速度和波达方向有关。若移动台朝向入射方向运动,则多普勒频移为正(即接收频率上升);若移动台背向入射波方向运动,则多普勒频移为负(即接收频率下降)。现假设信号载频900cfMHz,移动通信传播环境中,移动台三种典型的移动速度与多普勒频移分别为:1,行人步行速度3/kmh时,则行人步行情况下最大多普勒频移为:2.5cmffvHzc2,自行车的速度是25/kmh,则自行车运动中最大多普勒频移为:20.8cmffvHzc3,汽车的速度是100/kmh,则汽车运动中最大多普勒频移为:83.3cmffvHzc下面我们以瑞利信道为例,给出在上述三种情况下的仿真结果,以直观的看出多普勒效应在移动通信中的影响,其结果如下图:3/vkmh时多普勒效应对接收信号包络的影响;25/vkmh时多普勒效应对接收信号包络的影响;100/vkmh时多普勒效应对接收信号包络的影响;由上图可以清晰的看出,随着移动台速度的增加,接收信号的包络变化也越来越快,即信号的锐利衰落的速度越来越大。第二章多径衰落无线移动通信是一种变信道,无线通信的特性是信号以电磁波的形式传播,同一个发送站发送的电磁波在传播过程中会遇到很多建筑物、树木、起伏的地形等因素而引起的电波的发射、散射和绕射等,这样在这种充满发射波的传播环境中,到达移动台天线的信号是许多路径来的众多反射波的合成。由于电波通过各个路径的距离不同,因而各路径来的反射波到达时间不同,相位也不同。不同相位的多个电波在接受端叠加,有时同向叠加而加强,有时反相叠加而减弱。这样,接受信号的幅度将急剧变化,即产生了衰落。这种衰落是由多径引起的,所以称为多径衰落。多径衰落是移动无线通信最基本的特征之一,是影响接收效果的主要因素,包括三个方面:多径传播时延扩展、信号强度的快速衰减和不同路径信号的多普勒频移的变化引起的随机频率调制。多径传输信道表现为信道的冲击响应是一个随机过程。为了研究信道的实际特性,必须从信道特性的统计分析入手,建立信道的统计分析模型。假设通过多径信道传输一个窄脉冲,则接收信号呈现一个窄脉冲序列。如果反反复复多次进行窄脉冲探测试验,则接收脉冲的个数、脉冲的幅度、脉冲之间的相对时延都是随机变化的。如果通过不同电波入射角及不同的相对运动速度下进行正弦信号的探测试验,则可以发现接收信号不再是一个单频信号,而呈现信号的频扩展特性,而且频扩展特性与电波入射角和相对运动速度密切相关。第三章多普勒频移与多径衰落问题的解决方法1.解决多普勒频移问题的一般方法对于较低频段的GSM系统,可以采用增加保护带宽的方法,克服多普勒频移引起的误码率问题,在采用FDMA多址技术的通信系统中,整个系统带宽被分为若干个不相重叠的子带来传输并行的数据流,每个子带被称为一个信道,大约为几十KHz或十几KHz,在接收端用一组滤波器来分离各个子信道。此时的多普勒频移低于0.5KHz,为了避免子带间相互干扰,可以在子信道之间增加保护频带,从而克服多普勒频移产生的影响。该方法的优点是实现简单,而且不增加传输时间;但是频谱的利用率低,而且在频分多路数较大时多个滤波器的实现使系统复杂化。对于频段很高的3G系统,一般解决方法的基本思想是在接收端估计出频偏值,再用均衡或同步的方法进行补偿。但是,这些方法都需要准确的信道估计,在接收机移动速率很大、信道处于快衰落的情况下,要实现准确快速的信道估计非常困难。而且,一般的信道估计计算法只能得到一个固定的频偏值,所以在多普勒扩展(同时存在多个频偏)的情况下不能达到很好的效果。目前分集复用技术是一种比较通用的解决方法。2.OFDM2.1概述OFDM(OrthogonalFrequencyDivisionMultiplexing)即正交频分复用技术,实际上OFDM是MCMMulti-CarrierModulation,多载波调制的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰ICI。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。2.2基本原理正交频分复用OFDM(OrthogonalFrequencyDivisionMultiplex)是一种多载波调制方式,通过减小和消除码间串扰的影响来克服信道的频率选择性衰落。它的基本原理是将信号分割为N个子信号,然后用N个子信号分别调制N个相互正交的子载波。由于子载波的频谱相互重叠,因而可以得到较高的频谱效率。近几年OFDM在无线通信领域得到了广泛的应用。图是OFDM基带信号处理原理图。其中,(a)是发射机工作原理,(b)是接收机工作原理。当调制信号通过无线信道到达接收端时,由于信道多径效应带来的码间串扰的作用,子载波之间不再保持良好的正交状态,因而发送前需要在码元间插入保护间隔。如果保护间隔大于最大时延扩展,则所有时延小于保护间隔的多径信号将不会延伸到下一个码元期间,从而有效地消除了码间串扰。当采用单载波调制时,为减小ISI的影响,需要采用多级均衡器,这会遇到收敛和复杂性高等问题。在发射端,首先对比特流进行QAM或者QPSK调制,然后依次经过串并变换和IFFT变换,再将并行数据转化为串行数据,加上保护间隔(又称“循环前缀”),形成OFDM码元。在组帧时,需加入同步序列和信道估计序列,以便接收端进行突发检测、同步和信道估计,最后输出正交的基带信号。当接收机检测到信号到达时,首先进行同步和信道估计。当完成时间同步小数倍频偏估计和纠正后,经过FFT变换,进行整数倍频偏估计和纠正,此时得到的数据是QAM或QPSK的已调数据。对该数据进行相应的解调,就可得到比特流。FDM/FDMA(频分复用/多址)技术其实是传统的技术,将较宽的频带分成若干较窄的子带(子载波)进行并行发送是最朴素的实现宽带传输的方法。但是为了避免各子载波之间的干扰,不得不在相邻的子载波之间保留较大的间隔(如图(a)所示),这大大降低了频谱效率。因此,频谱效率更高的TDM/TDMA(时分复用/多址)和CDM/CDMA技术成为了无线通信的核心传输技术。但近几年,由于数字调制技术FFT(快速傅丽叶变换)的发展,使FDM技术有了革命性的变化。FFT允许将FDM的各个子载波重叠排列,同时保持子载波之间的正交性(以避免子载波之间干扰)。如图(b)所示,部分重叠的子载波排列可以大大提高频谱效率,因为相同的带宽内可以容纳更多的子载波。2.3技术优势OFDM技术之所以成为新一代无线通信核心技术的趋势,是因为它具有如下的优点:频谱效率高由于FFT处理使各子载波可以部分重叠,理论上可以接近Nyquist极限。以OFDM为基础的多址技术OFDMA(正交频分多址)可以实现小区内各用户之间的正交性,从而有效地避免了用户间干扰。这使OFDM系统可以实现很高的小区容量。带宽扩展性强由于OFDM系统的信号带宽取决于使用的子载波的数量,因此OFDM系统具有很好的带宽扩展性。小到几百kHz,大到几百MHz,都很容易实现。尤其是随着移动通信宽带化(将由£5MHz增加到最大20MHz),OFDM系统对大带宽的有效支持,成为其相对于单载波技术(如CDMA)的“决定性优势”。抗多径衰落由于OFDM将宽

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功