系统仿真-第-2-章-仿真用的概率概念

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

工业工程与管理系IndustrialEngineering&Management第二章仿真用的概率概念§1随机变量、概率函数、随机数§2均匀的连续分布随机数及其生成§3计算机产生随机数的算法§4随机数的统计检验§5各种离散分布随机数的产生§4非均匀的连续分布随机数及其产生工业工程与管理系IndustrialEngineering&Management确定性活动与随机活动确定性活动:是可以事先预言的,即在准确地重复一定的条件下,其变化的结果总是确定的,或者根据其过去的状态,相同的条件下可以预言将来的发展变化,我们把这一类活动称为确定性活动。确定性活动的主要特征是活动的运动可以用一个确定的数学形式来描述:f(t),或是数学函数,或是数学图表等。随机性活动:其变化的结果是事先不可预言的,即在相同的条件下进行重复实验,每次结果未必相同,或者是知道其过去的状况,在相同的条件、未来的发展事先都不能确定,这一类活动我们称为随机性活动。随机性活动的主要特征是这类活动的描述可以通过数学统计的方法描述。对于随机性活动进行研究所利用的数学工具是概率论及数理统计对于实际系统中随机活动进行研究时,往往由于众多的随机因素使得数学描述和分析变得十分困难,这时我们往往求助于计算机仿真。仿真为这类复杂的随机系统的研究提供了一个方便有效的手段。2.1随机变量、概率函数、随机数工业工程与管理系IndustrialEngineering&Management离散型随机变量定义•定义:对于随机活动的不同结果我们可以用不同的数值与其对应。这样,就可以用一个变量来描述随机活动,变量按一定的概率取某个值对应于随机活动按一定的概率取某个结果。这类变量称为随机变量。–离散型随机变量:若随机变量只取有限个数值或可列无穷多个数值,则称此类随机变量为离散型随机变量。–连续型随机变量:若随机变量可以取值于某个区间中的任一数,我们称为连续型随机变量。2.1随机变量、概率函数、随机数工业工程与管理系IndustrialEngineering&Management离散型随机变量数学定义•数学定义:如果一个随机变量x的一切可能取值为x1,x2,…,xn,…,并且X取值xn的概率为Pn,则X为一个离散型随机变量,{p1,p2,...,pn,...}称为X的概率函数。其中Pn必须满足下列两个条件:•(1)•(2),,2,1,0nPn11nnP2.1随机变量、概率函数、随机数工业工程与管理系IndustrialEngineering&Management离散型随机变量概率分布函数离散型随机变量X的累积分布函数定义,当X小于或等于某个给定值x的概率函数,记为P(X≤x)=F(x)。设随机变量X可能取值x1,x2,…,xn,…,则X的累积分布函数为其中Pi是X取值为Xi的概率。由定义可见0F(x)1当xy时,F(x)≤F(y),即F(x)是个单调增加的函数。iixixiPXXPxF2.1随机变量、概率函数、随机数工业工程与管理系IndustrialEngineering&Management连续型随机变量定义定义:若存在非负函数f(x),使得随机变量X取值于任一区间(a,b)的概率为P(ax≤b)=,则称X为连续型随机变量,f(x)称为X的密度函数。对于密度函数f(x)有dxxfba)(10dxxfxf2.1随机变量、概率函数、随机数工业工程与管理系IndustrialEngineering&Management连续型随机变量概率密度函数连续型随机变量的累积分布函数定义为随机变量小于或等于x的概率。它用F(x)表示,即由累积分布函数定义可知,0F(x)1。当时x1x2,F(x1)F(x2)。累积分布函数F(x)是单调递增函数。dxxfxFx2.1随机变量、概率函数、随机数工业工程与管理系IndustrialEngineering&Management概率密度函数/累积分布函数随机变量X落入区间(a,b)内的概率是。图中给出了一个连续随机变量的密度函数曲线和累积分布函数曲线。密度函数f(x)的值不能为负,要注意的是f(x)的值可以大于1,但是在任意区间(a,b)上由f(x)曲线围出的面积(图中阴影部分)必然1。从图中也可以看到累积分布函数F(x)的值随x值的增加而增加,而且它最终趋向极限值1。aFbF2.1随机变量、概率函数、随机数工业工程与管理系IndustrialEngineering&Management随机变量的数字特征•定义:随机变量的数字特征是与它的分布有关的某些数值,例如平均值、最大可能值等,它们反映了随机变量某些方面的特征。•分类:根据随机变量的种类:分别介绍离散型随机变量的数字特征、连续型随机变量的数字特征2.1随机变量、概率函数、随机数工业工程与管理系IndustrialEngineering&Management离散型随机变量的数字特征•平均值:设X为离散随机变量,其概率函数由下表给出:其中记,称为X的平均值。•数学方差Xx0x1x2……xn…P{X=Xi}P0P1P2……Pn…,,2,1,0nPn11nnP0iixPXXE2XEXEXDi22202022XEXEXEPXPXEXXEXEXDiiiiiii数学方差反映了各个随机变量的采样值偏离平均值的平均程度•变化系数:标准差与平均值的比值,反映了随机数偏离平均值的变化程度。变化系数=XEXD2.1随机变量、概率函数、随机数工业工程与管理系IndustrialEngineering&Management连续型随机变量的数字特征•平均值:设X为随机变量,其概率密度函数为f(x),则该随机变量的平均值m为:平均值又称为数学期望。•数学方差dxxfxm2XEXEXDi2222222XEXEXEdxxfxdxxfXExdxxfXExXEXEXDi•变化系数:标准差与平均值的比值,反映了随机数偏离平均值的变化程度。变化系数=XEXD数学方差反映了各个随机变量的采样值偏离平均值的平均程度2.1随机变量、概率函数、随机数工业工程与管理系IndustrialEngineering&Management随机变量的其它数字特征•模值定义为随机变量的概率密度函数在某处取峰值时的x值。当有多个峰值时,取最大峰值作为模值。•中间值:如果有一点Xm,随机变量有一半值将落在这一点以下,那么由此点所定义的值Xm称为中间值b中间值可以从累积分布函数曲线上求得,因为它是F(x)=0.5处的那个点。在x=1处时f(x)均达到峰值,则x=1就是随机变量的模值。中间值:Xm=1.6783469xxexf2.1随机变量、概率函数、随机数工业工程与管理系IndustrialEngineering&Management数理统计中的基本运算规则•,X一随机变量,则E(αX)=αE(X)•X,Y为两个相互独立的随机变量,则E(X+Y)=E(X)+E(Y)•,X一随机变量,则D(αX)=α2D(X)•,X一随机变量,则D(X+α)=D(X)•X,Y为两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)RRR2.1随机变量、概率函数、随机数工业工程与管理系IndustrialEngineering&Management(0,1)均匀分布随机数随机数:所谓随机数就是随机变量的样本取样值。均匀分布的随机数:随机变量x在其可能值范围中的任一区间出现的概率正比于此区间的大小与可能值范围的比值。(0,1)均匀分布随机数:在各种分布的随机数中,最常用和最重要的是在(0,1)区间上的均匀分布随机数。其他许多分布的随机数都可以由(0,1)均匀分布随机数经过变换和计算来产生。2.2均匀连续分布的随机数及其生成工业工程与管理系IndustrialEngineering&Management(0,1)均匀分布随机数的定义•(0,1)均匀分布随机变量x的概率密度函数为•累积分布函数其它,010,1xxf1,110,0,0xxxxxF0x11F(x)(0,1)均匀分布的分布函数2.2均匀连续分布的随机数及其生成0x1x2x11f(x)(0,1)均匀分布密度函数工业工程与管理系IndustrialEngineering&Management(0,1)均匀分布随机数的说明随机变量x落入区间(X1,X2)中的概率等于图中阴影区的面积,其值为(X2-X1),正比于区间(X1,X2)的大小。需要说明的是在计算机上表示连续变量只能是近似的,因为计算机中的数字只能是有限的位数。如果变量变化的最小步长可以达到计算机表示的最小值,并且在实际需要的精度之内变量可以达到任意值,就可以把这个变量看成是连续的。0x1x2x11f(x)(0,1)均匀分布密度函数2.2均匀连续分布的随机数及其生成工业工程与管理系IndustrialEngineering&Management(0,1)均匀分布随机数的产生方法•物理过程:常用的物理装置有放射粒子计数器、电子管随机数产生器。利用电子噪声或放射源去激励一个周期为0~9的计数器,对计数器定时选行采样就可以得到所需的随机数的一位数。多次重复此过程或者利用几个计数器同时运行,就可以得到任意位数的随机数。•随机数表:利用物理过程可以得到大量随机数,并将这些数制成表。在使用随机数时就可以依一定的顺序从表中取出随机数。为了适应实际需要的位数,对取出的随机数可以进行截断或拼接处理。•随机数产生程序:按照一定的算法计算出具有类似于均匀分布随机变量的独立取样值性质的数。因为这些数是按照定性的算法计算出来的,会有一定的周期性,因而被称为伪随机数。由于我们的目的是利用随机数来对随机活动的统计分析,只要伪随机数的数理统计性质能够满足实际需要就可以了。这些数理统计性质包括均匀性、独立性等。一般计算机上,产生随机数的函数为(0,1)均匀分布的随机数。2.2均匀连续分布的随机数及其生成工业工程与管理系IndustrialEngineering&Management计算机产生随机数的算法•用计算机程序通过计算产生的随机数都是伪随机数,它具有一定的周期性。•计算机产生随机数的特点:实用性强、简单易操作、产生速度快、计算机存储空间的要求低。•计算机上用数字方法产生的随机数的一般要求有:•1.产生的数值序列要具有分布的均匀性、抽样的随机性、试验的独立性以及前后的一致性。•2.产生的随机数要有足够长的周期,以满足你真的实际需要。3.产生随机数的速度要快,占用的内存空间要小。2.2均匀连续分布的随机数及其生成工业工程与管理系IndustrialEngineering&Management计算机产生随机数的算法计算机产生随机数的通常方法是利用一个递推公式:给定了k个初始值,就可以利用这个递推公式推算出第k+1个数Xk+1:递推公式有多种形式,其中最常见的有两种:-平方取中法-同余法knnnnXXXfX,,,21knnnXXX,,,21kkXXXfX,,,2112.2均匀连续分布的随机数及其生成工业工程与管理系IndustrialEngineering&Management平方取中法这是最早产生随机数的一种方法,一个二进制n位数X,自乘后一般得到一个2n位数X2。设平方后得到:取X0中间的n位数(设n为偶数)作出如下的二进制n位数:重复上述过程,可得二进制n为数序列,,…。令,则,,…就是所需要的(0,1)均匀分布随机数序列。nbbbX210nnbbbbX22120nnnnbbb2/22/12/nnnnbbbX2/2

1 / 59
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功