2013年高中数学复习选修2-3-第一章章末总结-阶段复习课(一)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

点击进入相应模块第一章章末总结/阶段复习课点击进入相应模块及时回顾基础有助于提升学科综合素养。本栏目精心梳理单元主干基础知识,系统全面、层次清晰,便于快速回顾、高效理解,以达事半功倍之目的。点击进入相应模块一、分类加法计数原理与分步乘法计数原理1.分类加法计数原理(1)定义:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.(2)“分类”的含义:完成一件事可分为若干类,各类的方法相互独立,各类中的各种方法也相互独立,用任何一类中的任何一种方法都可以单独完成这件事.(3)“加法”的含义:完成一件事的方法由各类中的各种方法数相加所得.点击进入相应模块(4)分类的原则:分类必须有一个明确的标准,标准不同分类也不同,分类的基本要求是:每一种方法必属于某一类(不漏),任意不同类的两种方法是不同的方法(不重),每类方法中的每种方法都应独立.(5)对“完成一件事”的理解:完成一件事,即完成既定的任务,如“三封信投四个信箱”,完成这件事即将三封信投完,应从“信”的角度分析,“五个人比赛,决出三个项目的冠军”,完成这件事即三项比赛结束,应从项目的角度分析.点击进入相应模块2.分步乘法计数原理(1)定义:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.(2)“分步”的含义:完成一件事要分若干步,各个步骤相互依存,缺一不可,只有各个步骤都完成后,才能完成这件事.点击进入相应模块(3)“乘法”的含义:完成一件事的方法由各步中各种方法数相乘所得.(4)分步原则:分步中必须有一个明确的标准,标准不同分步也不同.分步基本要求:一是完成一件事,必须且只需连续做完几步,既不漏步也不重步;二是每个步骤的方法之间是无关的,不能互相替代.点击进入相应模块【辨析】分类加法计数原理与分步乘法计数原理的区别和联系分类加法计数原理分步乘法计数原理关键词分类分步本质每类方案都能独立地完成这件事,它是独立的\,一次性的,每次得到的都是最后结果每一步得到的只是中间结果,任何一步都不能独立完成这件事,缺少任何一步也不能完成这件事,只有各个步骤都完成了,才能完成这件事各类(步)的关系各类方案之间是互斥的、并列的、独立的各步之间是关联的、相互依存的点击进入相应模块二、排列1.排列与排列数排列,排列数概念排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列排列数从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号表示mnA点击进入相应模块排列,排列数公式乘积形式=n(n-1)(n-2)…(n-m+1)阶乘形式性质备注n,m∈N*且m≤nmnAmnn!Anm!n0nnAn!;A1;0!1点击进入相应模块2.关于排列数公式的推导排列问题是分步乘法计数原理的典型应用,排列数公式也是由分步乘法计数原理推导得到的.3.排列数公式的应用排列数公式有两类形式,乘积形式常用来计算具体的数字的排列数;阶乘形式常用来处理含字母的排列数的化简、证明等.点击进入相应模块【辨析】1.排列的概念排列问题是针对不同元素的排列,若问题中允许元素重复,则不是排列问题.2.排列与排列数的区别排列与排列数是两个不同的概念,一个排列是按一定顺序排列的一列数,排列数是所有不同排列的个数,是一个数.点击进入相应模块三、组合1.组合与组合数组合,组合数概念一般地,从n个不同元素中取出m个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合,所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.表示mnC点击进入相应模块组合,组合数公式乘积形式阶乘形式性质备注m,n∈N*,且m≤nmmnnmmnn1nm1ACAm!mnn!Cm!nm!mnmmmm10nnn1nnnCC;CCC;C1;0!1点击进入相应模块2.组合的定义及其理解(1)定义中包含两个基本内容:一是“取出元素”,二是“合成一组”,合成一组即表示与顺序无关.(2)当两个组合的元素完全相同,不管它们的顺序如何都是相同的组合.当两个组合中的元素不完全相同时,就是不同的组合.点击进入相应模块3.的定义解释是从n个不同元素中取出m个元素拼成一组,在从n个不同元素中取出m个元素的同时,n个元素中剩余的n-m个元素就自然形成了一组,所以与是相对应的,所以两数相等.mnmnnCCmnCmnCnmnC点击进入相应模块【辨析】1.组合与组合数的区别组合与组合数是两个不同的概念,一个组合是由不同元素合成的一组数,组合数是所有不同组合的个数,是一个数字.2.排列、组合的区别与联系(1)区别:排列与顺序有关,组合与顺序无关.(2)联系:由组合数公式即所以排列可看成两步,第一步取,第二步将取出的元素全排列,因此组合可以看成排列的第一步.mmnnmmAC,AmmmnnmACA,点击进入相应模块四、二项式定理1.二项式定理(1)二项式定理概念公式(n∈N*,k=0,1,2,…,n)称为二项式定理特例通项二项式系数n0n1n1knkknnnabCaCabCabnnnCbn122kknnnnnn1x1CxCxCxCxnN*knkkk1nTCab(nN*,k0,1,2,,n)knC(nN*,k0,1,2,,n)点击进入相应模块(2)二项式定理的特征①二项展开式有n+1项,比二项式的次数大1.②二项式系数与二项展开式系数是两个不同的概念.③要注意逆用二项式定理来分析问题、解决问题.点击进入相应模块(3)二项式定理的通项公式①是(a+b)n的第k+1项,而不是第k项.②字母b的次数与组合数的上标相同.③字母a,b是一种“符号”,它可以是数、式及其他值.④a与b的次数之和是n.⑤通项公式是对(a+b)n这个标准形式而言的,如(a-b)n的展开式的通项公式是knkknCabkknkkk1nT1Cab.点击进入相应模块2.二项式系数的性质(1)性质对称性在二项展开式中,与首末两端“等距离”的两个二项式系数相等,增减性当时二项式系数逐渐增大当时二项式系数逐渐减小最大值当n为偶数时最大当n为奇数时最大各项的二项式系数的和mnmnnCCn1k2<n1k2>n2nCn1n122nnCC012nnnnnn024135n1nnnnnnCCCC2CCCCCC2①②点击进入相应模块(2)当n为偶数时,二项展开式有n+1项,有奇数个项,中间项为一项;当n为奇数时,二项展开式有n+1项,有偶数个项,中间项为两项.点击进入相应模块【辨析】二项式系数与二项展开式项的系数的区别二项式系数是指(n∈N*,k=0,1,2,…,n),是一个组合数,为正值.二项展开式项的系数是指该项中变量的系数,是一个实数,二项展开式项的系数中含有二项式系数.knC点击进入相应模块对所学知识及时总结,将其构建成知识网络,既有助于整体把握知识结构,又利于加深对知识间内在联系的理解。下面是本阶段的知识结构图,请要求学生从后面的备选答案中选择准确内容,填在框图中的相应位置。点击进入相应模块【备选答案】A.分类加法计数原理B.分步乘法计数原理C.二项式定理D.组合数公式E.组合F.(a+b)n=0n1n1nnCaCabknkknnnnCabCb(nN*)ABECFD点击进入相应模块两个计数原理【技法点拨】确定分类和分步的方法(1)“分类”表现为其中任何一类均可独立完成所给事情.“分步”表现为必须把各步骤均完成,才能完成所给事情,所以准确理解两个原理的关键在于弄清分类加法计数原理强调完成一件事情的几类办法互不干扰,不论哪一类办法中的哪一种方法都能够独立完成事件.点击进入相应模块(2)分步乘法计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成事件,步与步之间互不影响,即前一步用什么方法不影响后一步采取什么方法.点击进入相应模块【典例1】如图所示,从A地到B地有3条不同的道路,从B地到C地有4条不同的道路,从A地不经B地直接到C地有2条不同的道路.(1)从A地到C地共有多少种不同的走法?(2)从A地到C地再回到A地有多少种不同的走法?(3)从A地到C地再回到A地,但返回时要走与去时不同的道路.有多少种不同的走法?点击进入相应模块【解析】(1)从A地到C地的走法分为两类:第一类经过B地,第二类不经过B地.在第一类中分两步完成,第一步从A地到B地,第二步从B地到C地,所以从A地到C地的不同走法总数是3×4+2=14(种).(2)该事件发生的过程可以分为两大步:第一步去,第二步回.由(1)可知这两步的走法都是14种,所以去后又回来的走法总数是14×14=196(种).点击进入相应模块(3)该事件发生的过程与(2)一样可分为两大步,但不同的是第二步即返回时的走法比去时的走法少一种,所以,走法总数为14×13=182(种).点击进入相应模块【想一想】本题(1)(2)(3)分别应用了怎样的计数原理?解(3)时的易错点是什么?提示:(1)本题(1)运用了分类加法计数原理,(2)(3)运用了分步乘法计数原理.(2)解本题(3)时易忽视条件“返回时要走与去时不同的道路”而错求成14×14=196(种).点击进入相应模块排列、组合应用题【技法点拨】解排列、组合应用题的解题策略(1)特殊元素优先安排的策略;(2)合理分类和准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;点击进入相应模块(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略;(7)定序问题除法处理的策略;(8)分排问题直排处理的策略;(9)“小集团”排列问题中先整体后局部的策略;(10)构造模型的策略.点击进入相应模块简单记成:合理分类,准确分步;特殊优先,一般在后;先取后排,间接排除;集团捆绑,间隔插空;抽象问题,构造模型;均分除序,定序除序.点击进入相应模块【典例2】(1)某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲不到银川,乙不到西宁,共有多少种不同派遣方案?(2)现有3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法种数共有多少?点击进入相应模块(3)在高三一班元旦晚会上,有6个演唱节目,4个舞蹈节目.①当4个舞蹈节目要排在一起时,有多少种不同的节目安排顺序?②当要求每2个舞蹈节目之间至少安排1个演唱节目时,有多少种不同的节目安排顺序?③若已定好节目单,后来情况有变,需加上诗朗诵和快板2个栏目,但不能改变原来节目的相对顺序,有多少种不同的节目演出顺序?点击进入相应模块【解析】(1)因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有种方法,所以共有种方法;③若乙参加而甲不参加同理也有种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余学生到另两个城市有种,共有种方法.所以共有不同的派遣方法总数为种.48A38A383A383A28A287A43328888A3A3A7A4088点击进入相应模块(2)方法一:设计让3所学校依次挑选:先让学校甲挑选,有种;再由学校乙挑选,有种;余下到学校丙只有一种.于是不同的方法数共有种.方法二:组成三个体检队:给甲医生配备2名护士,不同方法数为;接着给乙医生配备2名护士,有种方法;剩下的2名护士配备给丙医生,只有一种方法.故组成三个体检队的方法共有种.1236CC1224CC12123624CCCC54026C24C2264CC90=点击进入相应模块将三个体检队派往三个学校,每校1队,不同的分派方法有种.由分步乘法计数原理,满足题意

1 / 56
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功