第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的013.42/5……是远远不够的。所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。若一个数小于0,则称它是一个负数。负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,-5.33,-45,-2/5正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于0,则称它是一个正数。正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。例如:+2,5.33,+45,2/54、0既不是正数,也不是负数,它是正、负数的分界限负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5、数轴:6、比较两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。负数之间比较大小,数字大的反而小,数字小的反而大。也可以先比较与其对应的两个正数的大小,对应的正数大的那个负数反而小。1/3>1/6-1/3<-1/67.温馨提示:水结冰时的温度是0摄氏度,0在这里的意义不是表示“没有”,而是一个具体的数。在用正负数表示具有相反意义的量时,要先规定哪个量为正(或负)。如果上升用正数表示,那么下降一定用负数表示。第二单元百分数二(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。几折就是十分之几,也就是百分之几十。例如:八折=8/10=80﹪,六折五=6.5/10=65/100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十。例如:一成=1/10=10﹪八成五=8.5/10=85/100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。(2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。(3)应纳税额:缴纳的税款叫做应纳税额。(4)税率:应纳税额与各种收入的比率叫做税率。(5)应纳税额的计算方法:应纳税额=总收入×税率收入额=应纳税额÷税率2、利率(1)存款分为活期、整存整取和零存整取等方法。(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。(3)本金:存入银行的钱叫做本金。(4)利息:取款时银行多支付的钱叫做利息。(5)利率:利息与本金的比值叫做利率。(6)利息的计算公式:利息=本金×利率×时间利率=利息÷时间÷本金×100%(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)税后利息=本金×利率×时间×(1-利息税率)购物策略:估计费用:根据实际的问题,选择合理的估算策略,进行估算。购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案学后反思:做事情运用策略的好处第三单元圆柱和圆锥一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。圆柱也可以由长方形卷曲而得到。两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。其中,第一种方式得到的圆柱体体积较大。2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。(2)侧面的特征:圆柱的侧面是一个曲面。(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S增=2πr²②竖切(过直径):切面是长方形(如果2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=45、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=π2πr侧面积:S侧=2π表面积:S表=2S底侧=2πr²+2π体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积S表π(2π)22/4π,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类温馨提示:1)把一个圆柱截成n段后,其表面积增加了2(1)个底面积。2)容积的计算方法和体积的计算方法相同,只是计算容积的数据要从里面测量。3)圆柱的高不变,底面半径、直径或周长扩大到原来的n倍,则体积扩大到原来的n2倍,若底面半径、直径或周长缩小到原来的1,则体积缩小到原来的1/(n2)。4)在圆柱的立体图形中,两个底面圆心之间的距离是圆柱的高,但在圆柱的平面展开图中,长方形的宽(或正方形的边长)才是圆柱的高。5)两个圆柱的半径比是1:a(a0),高的比是a:1,则它们的体积之比是1:a。二、圆锥1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。(2)侧面的特征:圆锥的侧面是一个曲面(3)高的特征:圆锥有一条高。4、圆锥的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=25、圆锥的相关计算公式:底面积:S底=πr²底面周长:C底=π2πr体积:V锥=1/3πr²h考试常见题型:①已知圆锥的底面积和高,求体积,底面周长②已知圆锥的底面周长和高,求圆锥的体积,底面积③已知圆锥的底面周长和体积,求圆锥的高,底面积。以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算三、圆柱和圆锥的关系1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。4、圆柱与圆锥等底等高,体积相差2/3四、温馨提示:(1)已知圆锥的底面半径和高,可以直接利用公式:πr2h÷3来求圆锥的体积。(2)已知圆锥的底面直径和高,可以直接利用公式:π(d÷2)2h÷3求圆锥的V(3)已知圆锥的底面周长和高,可以直接利用公式:π(C÷2÷π)2h÷3求出圆锥的体积。4)利用÷3计算圆锥的体积时不要忘记除以3或乘1/3。题型总结①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)③横截面的问题④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3第四单元比例1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。(5)比的后项不能是零。(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。5、比例的意义:表示两个比相等的式子叫做比例。组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。判断两个比能不能组成比例,关键要看它们的比值是不是相等,若比值相等,则能组成比例;若比值不相等,则不能组成比例。温馨提示:1)比例中等号的两侧必须都是一个比。2)把等式改写成比例式后,a和x必须同时为外项,或同时为内项。判断两个比能否组成比例,也可以根据比的基本性质把这两个比化成最简比,如果所化成的最简比相同,那么这两个比就能组成比例,否则不能。判断四个数是否能组成比例,先把最大数与最小数相乘,再把其余两数相乘,如果这两个积相等,那么这四个数就能组成比例。6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。如果a××d,那么与c能组成比例。7、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示(一定)9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x×(一定)10、判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。正比例与反比例的异同点:相同点:(1)都是两种相关联的量。(2)一种量随着另一种量变化。不同点:正比例(1)“变化方向”相同,一种量扩大或缩小,另一种量也扩大或缩小。(2)相对应的两个数的比值(商)一定。(3)关系式:(一定)。反比例(1)“变化方向”相反,一种量扩大或缩小,另一种量反而缩小或扩大。(2)相对应的两个数的乘积一定。(3)关系式:x×(一定)。温馨提示:1)当两种相关联的量相对应的两个数的积不一定,而和一定时,它们不成任何比例。铺地面积一定时,方砖边长与所需块数不成反比例,但是方砖面积与所需块数成反比例。2)如果a×(a、b、c均为非0的